Ir al contenido

Documat


Algebraic surfaces of general type with p_g=q=1 and genus 2 Albanese fibrations

  • Autores: Songbo Ling
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 2, 2019, págs. 247-266
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0219-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we study algebraic surfaces of general type with p_g=q=1 and genus 2 Albanese fibrations. We first study the examples of surfaces with p_g=q=1, K^2=5 and genus 2 Albanese fibrations constructed by Catanese using singular bidouble covers of \mathbb {P}^2. We prove that these surfaces give an irreducible and connected component of \mathcal {M}_{1,1}^{5,2}, the Gieseker moduli space of surfaces of general type with p_g=q=1, K^2=5 and genus 2 Albanese fibrations. Then by constructing surfaces with p_g=q=1,K^2=3 and a genus 2 Albanese fibration such that the number of the summands of the direct image of the bicanonical sheaf (under the Albanese map) is 2, we give a negative answer to a question of Pignatelli.

  • Referencias bibliográficas
    • Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. London Math. Soc. (3) 7, 414–452 (1957)
    • Bauer, I., Catanese, F.: Burniat surfaces III: deformations of automorphisms and extended Burniat surfaces. Doc. Math. 18, 1089–1136 (2013)
    • Barth, W., Hulek, K., Peters, C., van de Ven, A.: Compact Complex Surfaces. A series of modern surveys in mathematics [results in mathematics...
    • Bombieri, E.: Canonical models of surfaces of general type. Inst. Hautes Études Sci. Publ. Math. 42, 171–219 (1973)
    • Cai, J.-X.: Automorphisms of elliptic surfaces, inducing the identity in cohomology. J. Algebra 322, 4228–4246 (2009)
    • Catanese, F.: On a Class of Surfaces of General Type, in Algebraic Surfaces, pp. 269–284. Liguori, CIME, Liguor (1981)
    • Catanese, F.: On the moduli space of surfaces of general type. J. Differ. Geom. 19, 483–515 (1984)
    • Catanese, F.: Singular bidouble covers and the construction of interesting algebraic surfaces. Contemp. Math. 241, 97–119 (1999)
    • Catanese, F.: Fibred surfaces, varieties isogenous to a product and related moduli spaces. Am. J. 122, 1–44 (2000)
    • Catanese, F.: Kodaira fibrations and beyond: methods for moduli theory. arXiv:1611.06617
    • Catanese, F., Ciliberto, C.: Surfaces with . Problems in the Theory of Surfaces and Their Classification (Cortona, 1991), 49–79. Symposium...
    • Catanese, F., Ciliberto, C.: Symmetric products of elliptic curves and surfaces of general type with . J. Algebr. Geom. 2(3), 389–411 (1993)
    • Catanese, F., Pignatelli, R.: Low genus fibrations. I. Ann. Sci. École Norm. Sup. (4) 39(6), 1011–1049 (2006)
    • Dolgachev, I.V.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, Cambridge (2012)
    • Frapporti, D., Pignatelli, R.: Mixed quasi- tale quotients with arbitrary singularities. Glasgow Math. J. 57(1), 143–165 (2015)
    • Friedman, R.: Algebraic Surfaces and Holomorphic Vector Bundles. Universitext. Springer, New York (1998)
    • Ishida, H.: On fibrations of genus 2 with (preprint)
    • Horikawa, E.: Algebraic surfaces of general type with small V. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 745–755 (1981)
    • Kodaira, K.: Pluricanonical systems on algebraic surfaces of general type. J. Math. Soc. Japan 20, 170–192 (1968)
    • Pignatelli, R.: Some (big) irreducible components of the moduli space of minimal surfaces of general type with and . Atti Accad. Naz. Lincei...
    • Polizzi, F.: Standard isotrivial fibrations with . J. Algebra 321, 1600–1631 (2009)
    • Rito, C.: Involutions on surfaces with . Collect. Math. 61(1), 81–106 (2010)
    • Šafarevič, I.R., Averbuh, B.G., Vaǐnberg, JuR, Žižčenko, A.B., Manin, JuI, Moǐšezon, B.G., Tjurina, G.N., Tjurin, A.N.: Algebraic surfaces....
    • Xiao, G.: Surfaces fibrées en courbes de genre deux (Surfaces fibered by curves of genus two). Lecture Notes in Mathematics, p. 1137. Springer,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno