Ir al contenido

Documat


Uniform rotundity in every direction of Orlicz function spaces equipped with the p-Amemiya norm

  • Autores: Radosław Kaczmarek
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 1, 2019, págs. 71-86
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0220-3
  • Enlaces
  • Resumen
    • Some conditions which guarantee that the Orlicz function spaces equipped with the p-Amemiya norm (1 p \infty) and generated by N-functions are uniformly rotund in every direction are given. Obtained result broaden the knowledge about this notion in Orlicz function spaces with the p-Amemiya norm (1\le p\le \infty).

  • Referencias bibliográficas
    • Akimovič, V.A.: The uniform convexity and uniform smoothness of Orlicz spaces. Teor. Funkciĭ Funkcional. Anal. i Priložen 15, 114–121 (1972)
    • Cao, F., Mao, R., Wang, B.: Uniform rotundity in every direction of Orlicz–Sobolev spaces. J. Inequal. Appl. 2016, 277 (2016)
    • Chen, S.: Geometry of Orlicz spaces. Diss. Math. 356, 1–204 (1996)
    • Chen, S.T.: On the properties of locally K-uniform rotundity and uniform rotundity in every direction for Banach spaces, (Chinese). Nat. Sci....
    • Chen, S.T.: Some rotundities of Orlicz spaces with Orlicz norm. Bull. Pol. Acad. Sci. Math. 34(9–10), 585–596 (1986)
    • Chen, L., Cui, Y.: Complex extreme points and complex rotundity in Orlicz function spaces equipped with the p-Amemiya norm. Nonlinear Anal....
    • Chen, L., Cui, Y.: Complex rotundity of Orlicz sequence spaces equipped with the p-Amemiya norm. J. Math. Anal. Appl. 378(1), 151–158 (2011)
    • Chen, S., Cui, Y., Hudzik, H., Sims, H.: Geometric properties related to fixed point theory in some Banach function lattices. In: Kirk, W.A.,...
    • Chen, L., Cui, Y., Zhao, Y.: Complex convexity of Musielak–Orlicz function spaces equipped with the p-Amemiya norm. Abstr. Appl. Anal. (2014)....
    • Chen, L.L., Cui, Y.A., Zhao, Y.F., Niu, J.L.: Complex convexity of Musielak–Orlicz sequence spaces equipped with the p-Amemiya norm, (Chinese)....
    • Cui, Y., Duan, L., Hudzik, H., Wisła, M.: Basic theory of p-Amemiya norm in Orlicz spaces (1\le p\le \infty ): extreme points and rotundity...
    • Cui, Y., Hudzik, H., Wisła, M.: M-Constants, Dominguez–Benavides coefficient, and weak fixed point property in Orlicz sequence spaces equipped...
    • Cui, Y., Hudzik, H., Wisła, M.: Monotonicity properties and dominated best approximation problems in Orlicz spaces equipped with the p-Amemiya...
    • Cui, Y., Hudzik, H., Li, J., Wisła, M.: Strongly extreme points in Orlicz spaces equipped with the p-Amemiya norm. Nonlinear Anal. 71, 6343–6364...
    • Cui, Y., Hudzik, H., Wisła, M., Wlaźlak, K.: Non-squareness properties of Orlicz spaces equipped with the p-Amemiya norm. Nonlinear Anal....
    • Day, M.M., James, R.C., Swaminathan, S.: Normed linear spaces that are uniform convexity in every direction. Can. J. Math. 23, 1051–1059 (1971)
    • Duan, L.F., Xu, J., Cui, Y.: Extreme points and rotundity in Orlicz sequence spaces equipped with p-Amemiya (1\le p \le \infty ) norm, (in...
    • Garkavi, A.L.: On the Čebyšev center of a set in a normed space (Russian). In: Studies of Modern Problems of Constructive Theory of Functions,...
    • Garkavi, A.L.: The best possible net and the best possible cross-section of a set in a normed space (Russian). Izv. Akad. Nauk SSSR Ser. Mat....
    • Garkavi, A.L.: The best possible net and the best possible cross-section of a set in a normed space (Russian). Am. Math. Soc. Transl. II....
    • Goebel, K., Kirk, W.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1991)
    • Halmos, P.R.: Measure Theory. D. Van Nostrand Company Inc, New York (1950)
    • He, X., Cui, Y., Hudzik, H.: The fixed point property of Orlicz sequence spaces equipped with the p-Amemiya norm. Fixed Point Theory Appl....
    • He, X., Yu, J., Cui, Y., Huo, X.: Packing constant in Orlicz sequence spaces equipped with the p-Amemiya norm. Abstr. Appl. Anal. (2014)....
    • Hudzik, H., Maligranda, L.: Amemiya norm equals Orlicz norm in general. Indag. Math. 11(4), 573–585 (2000)
    • Kaczmarek R.: Uniform rotundity of Orlicz function spaces equipped with the p-Amemiya norm. Mathematische Nachrichten. 1–19 (2018). https://doi-org.sire.ub.edu/10.1002/mana.201700025
    • Kamińska, A.: On some convexity properties of Musielak–Orlicz spaces. In: Proceedings of the 12th Winter School on Abstract Analysis (Srní,...
    • Kamińska, A.: Some convexity properties of Musielak–Orlicz spaces of Bochner type. In: Proceedings of the 13th Winter School on Abstract Analysis...
    • Kamińska, A.: Uniform rotundity in every direction of sequence Orlicz spaces. Bull. Pol. Acad. Sci. Math. 32(9–10), 589–594 (1984)
    • Krasnoselskiĭ, M.A., Ya, B.: Rutickiĭ, Convex Functions and Orlicz Spaces, Groningen, Nordhoff, 1961 (English translation); Original Russian...
    • Kirk, W.A., Sims, B. (eds.): Handbook of Metric Fixed Point Theory. Kluwer Academic, Dordrecht (2001)
    • Kolwicz, P., Płuciennik, R.: On uniform rotundity in every direction in Calderón–Lozanovskiĭ sequence spaces. J. Convex Anal. 14(3), 621–645...
    • Li, J., Cui, Y., Hudzik, H., Wisła, M.: Strongly extreme points in Orlicz spaces equipped with the p-Amemiya norm. Nonlinear Anal. 71(12),...
    • Luxemburg, W.A.J.: Banach Function Spaces. Thesis Delft (1955)
    • Maligranda, L.: Orlicz Spaces and Interpolation, (Seminárias de Mathemática: vol. 5), Campinas (Brazil) Univ. Estadual de Campinas (1989)
    • Musielak, J.: Orlicz spaces and modular spaces. In: Lecture Notes Math, vol. 1034. Springer, Berlin (1983)
    • Orlicz, W.: A note on modular spaces. Bull. Acad. Polon. Sci. Math. 9, 157–162 (1961)
    • Orlicz, W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Int. Pol. Ser. A 8(9), 207–220 (1932)
    • Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker Inc., New York (1991)
    • Reisner, S.: On two theorems of Lozanovskiĭ concerning intermediate Banach lattices, in: geometric aspects of functional analysis (Israel...
    • Shi, S.J., Chen, S.T.: Uniform rotundity in every direction of Musielak–Orlicz spaces L_p(x)(\varOmega ) (Chinese). Nat. Sci. J. Harbin Normal...
    • Smith, M.A., Turett, B.: Rotundity in Lebesgue–Bochner function spaces. Trans. Am. Math. Soc. 251(1), 105–118 (1980)
    • Wang, T.F., Shi, Z.R., Chen, G.H.: Orlicz sequence spaces endowed with Orlicz norm that are uniformly rotund in every direction. Acta Sci....
    • Wang, T.F., Shi, Z.R., Cui, Y.: Orlicz spaces that are uniformly rotund in every direction. Comment. Math. (Prace Mat.) 35, 245–262 (1995)
    • Wisła, M.: Geometric properties of Orlicz spaces equipped with p-Amemiya norms-results and open questions. Comment. Math. 55(2), 183–209 (2015)
    • Zizler, V.: On some rotundity and smoothness properties of Banach spaces. Dissertationes Math. Rozprawy Mat., vol. 87 (1971). (errata insert)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno