Ir al contenido

Documat


Optimización y control de un proceso de mezclas Rundown para la fabricación de gasolinas

  • González-Martín, Rafael [2] ; Morilla, Fernando [1]
    1. [1] Universidad Nacional de Educación a Distancia

      Universidad Nacional de Educación a Distancia

      Madrid, España

    2. [2] Petroleos del Norte S.A.
  • Localización: Revista iberoamericana de automática e informática industrial ( RIAI ), ISSN-e 1697-7920, Vol. 16, Nº. 3, 2019, págs. 284-295
  • Idioma: español
  • DOI: 10.4995/riai.2019.10639
  • Títulos paralelos:
    • Gasoline rundown blender Process Optimization and Control
  • Enlaces
  • Resumen
    • español

      La gasolina comercial es una mezcla de componentes obtenidos de la destilación del petróleo. El reto del Sistema de Optimización y Control es maximizar el margen económico del proceso utilizando la mezcla de componentes más barata, satisfaciendo la composición de las mezclas, los inventarios, la disponibilidad de las unidades de producción y las restricciones hidráulicas de las líneas. La complejidad de estos sistemas de mezcla ha ido aumentando debido a la competencia creciente en el sector, las refinería más competitivas realizan las mezclas con componentes que provienen directamente de unidad sin pasar por almacenamiento intermedio, método rundown, se disminuyen inventarios y se aumenta el beneficio. En este artículo se presenta un método innovador consistente en aplicar distintos niveles de automatización emulando la estrategia de control en cascada. Los resultados obtenidos en simulación han permitido aplicar el método propuesto en una instalación real, donde se ha podido contrastar la bondad del método y su generalización a un sistema con dimensionamiento real.

    • English

      Commercial gasoline is a blend of components obtained from the crude oil distillation processes. The Optimization and Control system challenge is maximizing the profit by choosing the less expensive components blend, honoring the process constraints such blend properties, tank inventories, components availability and hydraulic constraints among others. The increasing competitiveness in the oil refining industry has led the blending process to be more and more complex, blending components are tend to be used directly from process units instead of using intermediate tanks (rundown blender), the additional economical margin is huge. This paper presents a simply but practical approach to address this blending process problems by emulating the cascade control strategy, two MPC controllers are cascaded to the optimizer algorithm. The good results obtained in the simulation stage have enabled applying the approach in a real blending process where the good performance of the method has been confirmed.

  • Referencias bibliográficas
    • Agrawal, S. (1995). Integrate blending control, optimization and planning. Hydrocarbon Processing, 129-139.
    • Auckland, M., & Charnock, D. (1969). The Development of Linear Blending Indices for Petroleum Properties". J. Institute of Petroleum,...
    • Baird, C. T. (1989). Guide to Petroleum Blending. Austin, Texas: HPI Consultants, Inc.
    • Borden, G., & Friedmann, P. G. (1998). Control Valves: Practical Guides for Measurement and Control. International Society of Automation.
    • Camacho, E., & Bordons, C. (2007). Model Predictive Control. London: Springer. https://doi.org/10.1007/978-0-85729-398-5
    • Campo López, A. (2014). Valvulas de Control: Selección y Cálculo. Ediciones Diaz de Santos.
    • Chebre, M., Creff, Y., & Petit, N. (2010). Feedback Control and Optimization for the production of commercial fuels by blending. Journal...
    • Chen, W., & Yang, J. (2016). A double loop optimization method for gasoline online blending. IEEE International Conference on Industrial...
    • Cheng, H., Zhong, W., & Qian, F. (2011). Real Time Optimization of the Gasoline Blending Process with Unscented Kalman Filter. International...
    • De Keyser, R. (1991). Basic Principles of Model Based Predictive Control. ECC 91 European Control Conference, (págs. 1753-1758). Grenoble.
    • Diaz, A., & Barsamian , J. (1996). Meeting changing fuel requirements with online optimization. Hidrocarbon Processing, 71-76.
    • Fisher. (2017). Control Valve Handbook 5th Ed. Singapore: Fisher Controls International LLC.
    • Forbes, J., & Marlin, T. (1994). Model accuracy for economic optimizing controllers. The bias update case. Industrial Engineering Chemistry...
    • Garcia, C., & Morari, M. (1982). Internal Model Control-I. A unifying review and some new results. IECPDD(21), 308-323. https://doi.org/10.1021/i200017a016
    • Givens, L. (1985). Modern petroleum refining: An overview. Automotive Engineering, 69-77.
    • ISA, I. S. (2013). ANSI/ISA-95.00.03-2013 Enterprise Control System Integration Part 3. North Carolina USA: Research Triangle Park ISA.
    • Kalman, R. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 35-45....
    • Marlin, T. E. (2000). Process Control, Designing Processes and Control System for Dynamic Performance 2nd ed. New York: McGraw-Hill.
    • Morilla, F., Garrido, J., & Vázquez, F. (2013). Control Multivariable por Desacoplo. Revista Iberoamericana de Automática e Informática...
    • Morris, W. (1975). The Interaction Approach to Gasoline Blending. NPRA 73rd Annual Meeting. San Antonio, Texas.
    • Perry, R. H. (1989). Perry's Chemical Engineers Handbook 6th Ed. USA: McGraw-Hill.
    • Qi, Z., & Fisher, D. (1994). Robust stability of model predictive control. American Control Conference, (págs. 3258-3262). Baltimore USA....
    • Qin, S., & Badgwell, T. (2003). A survey of industrial model predictive control technology. Control Engineering Practice, 733-764. https://doi.org/10.1016/S0967-0661(02)00186-7
    • Ramsey, J., & Truesdale, P. (1990). Blend optimization integrated into refinery wide strategy. Oil & Gas Journal, 40-44.
    • Rusin, M., Chung, H., & Marshall, J. (1981). A transformation method for calculating the research and motor octane numbers of gasoline...
    • Seborg, D. (1999). A perspective on Advanced Strategies for Process Control (revisited). New York: Springer-Verlag. https://doi.org/10.1007/978-1-4471-0853-5_4
    • Singh, A., Forbes, J., Vermeer, P., & Woo, S. (1997). Model Updating in the Presence of Stochastic Feedstock Disturbances for Real-Time...
    • Singh, A., Forbes, J., Vermeer, P., & Woo, S. (2000). Model based real time optimization of automotive gasoline blending operations. Journal...
    • Sullivan, T. (Mayo de 1990). Refinery-wide blend control and optimization. Hydrocarbon Processing, 93-96.
    • Treiber, S. e. (1998). Reformulated Gasoline: The challenge to conventional Gasoline Blending Technology. Hydrocarbon Processing Process Optimization...
    • Wang, W., Li, Z., Zhang, Q., & Li, Y. (2007). On-line optimization model design of gasoline blending system under parametric uncertainty....
    • Zang, Y., Monder, D., & Forbes, J. (2002). Real-time optimization under parametric uncertainty: aprobability constrained approach. Journal...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno