Ir al contenido

Documat


Análisis de Von Neumann para el método Local Discontinuous Galerkin en 1D

  • Castillo, Paul [1] ; Gómez, Sergio [2]
    1. [1] University of Puerto Rico System

      University of Puerto Rico System

      Puerto Rico

    2. [2] Universidad Nacional Autónoma de Honduras

      Universidad Nacional Autónoma de Honduras

      Honduras

  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 37, Nº. 2, 2019 (Ejemplar dedicado a: Revista Integración, temas de matemáticas), págs. 199-217
  • Idioma: español
  • DOI: 10.18273/revint.v37n2-2019001
  • Títulos paralelos:
    • Von Neumann analysis for the Local Discontinuous Galerkin method in 1D
  • Enlaces
  • Resumen
    • español

      Utilizando el análisis de von Neumann como herramienta teórica,se desarrolla un análisis sobre las condiciones de estabilidad de algunosmétodos explícitos de avance en tiempo, en combinación con la discretización espacial Local Discontinuous Galerkin (LDG) por sus siglas en inglés y aproximaciones de alto orden. La constante de estabilidad CFL (Courant-Friedrichs-Lewy) se estudia en función de los parámetros del método LDG y el grado de aproximación. Se realiza una serie de experimentos numéricos para validar los resultados teóricos.

    • English

      Using the von Neumann analysis as a theoretical tool, an analysisof the stability conditions of some explicit time marching schemes, in combinationwith the spatial discretization Local Discontinuous Galerkin (LDG)and high order approximations, is presented. The stability constant, CFL(Courant-Friedrichs-Lewy), is studied as a function of the LDG parametersand the approximation degree. A series of numerical experiments is carriedout to validate the theoretical results.

  • Referencias bibliográficas
    • [1] Castillo P., “Stencil reduction algorithms for the Local Discontinuous Galerkin method”, Internat. J. Numer. Methods Engrg. 81 (2010),...
    • [2] Castillo P., Cockburn B., Perugia I. and Schötzau D., “An a priori error analysis of the Local Discontinuous Galerkin method for elliptic...
    • [3] Castillo P., Cockburn B., Schötzau D. and Schwab Ch., “An optimal a priori error estimate for the hp-version of the Local Discontinuous...
    • [4] Castillo P. and Gómez S., “On the conservation of fractional nonlinear Schrödinger equation’s invariants by the Local Discontinuous Galerkin...
    • [5] Charney J.G., Fjörtoft R. and Von Neumann J., “Numerical integration of the barotropic vorticity equation”, Tellus 2 (1950), No. 4, 237–254.
    • [6] Cockburn B. and Dawson C., “Some extensions of the Local Discontinuous Galerkin method for convection diffusion equations in multidimensions”,...
    • [7] Cockburn B. and Dong B., “An analysis of the minimal dissipation Local Discontinuous Galerkin method for convection diffusion problems”,...
    • [8] Cockburn B. and Shu C.W., “The Local Discontinuous Galerkin method for time-dependent convection-diffusion systems”, SIAM J. Num. Anal....
    • [9] Gustafsson B., Kreiss H.O. and Oliger J., Time dependent problems and difference methods, John Wiley & Sons, Inc., New York, 1995.
    • [10] Kubatko E.J., Dawson C. and Westerink J.J., “Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids”,...
    • [11] Kubatko E.J., Westerink J.J. and Dawson C., “Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving...
    • [12] Perugia I. and Schötzau D., “An hp-analysis of the Local Discontinuous Galerkin method for diffusion problems”, J. Scientific Computing....
    • [13] Strikwerda J.C., Finite difference schemes and partial differential equations, SIAM, Philadelphia, 2004.
    • [14] Toulorge T. and Desmet W., “CFL conditions for Runge-Kutta discontinuous Galerkin methods on triangular grids”, J. Comput. Phys. 230...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno