Ir al contenido

Documat


Resumen de Overconvergent quaternionic forms and anticyclotomic p-adic L-functions

Chan-Ho Kim

  • We reinterpret the explicit construction of Gross points given by Chida-Hsieh as a non-Archimedian analogue of the standard geodesic cycle (i∞)-(0) on the Poincaré upper half plane. This analogy allows us to consider certain distributions, which can be regarded as anticyclotomic p-adic L-functions for modular forms of non-critical slope following the overconvergent strategy à la Stevens. We also give a geometric interpretation of their Gross points for the case of weight two forms. Our construction generalizes those of  Bertolini-Darmon, Bertolini-Darmon-Iovita-Spiess,-and Chida-Hsieh and shows a certain integrality of the interpolation formula even for non-ordinary forms.


Fundación Dialnet

Mi Documat