Ir al contenido

Documat


Overconvergent quaternionic forms and anticyclotomic p-adic L-functions

  • Kim, Chan-Ho [1]
    1. [1] KIAS (Seül, Corea del Sud). School of Mathematics
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 63, Nº 2, 2019, págs. 727-767
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6321910
  • Enlaces
  • Resumen
    • We reinterpret the explicit construction of Gross points given by Chida-Hsieh as a non-Archimedian analogue of the standard geodesic cycle (i∞)-(0) on the Poincaré upper half plane. This analogy allows us to consider certain distributions, which can be regarded as anticyclotomic p-adic L-functions for modular forms of non-critical slope following the overconvergent strategy à la Stevens. We also give a geometric interpretation of their Gross points for the case of weight two forms. Our construction generalizes those of  Bertolini-Darmon, Bertolini-Darmon-Iovita-Spiess,-and Chida-Hsieh and shows a certain integrality of the interpolation formula even for non-ordinary forms.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno