Ir al contenido

Documat


On outgoing solutions for a system of time-harmonic elastic wave in the exterior of a star-shaped domain

  • Cortés Vega, Luis A. [1] ; Fernández, Claudio [2] ; Perla Menzala, Gustavo [3]
    1. [1] Universidad de Antofagasta

      Universidad de Antofagasta

      Antofagasta, Chile

    2. [2] Pontificia Universidad Católica de Chile

      Pontificia Universidad Católica de Chile

      Santiago, Chile

    3. [3] Universidade Federal do Rio de Janeiro

      Universidade Federal do Rio de Janeiro

      Brasil

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 25, Nº. 2, 2006, págs. 205-229
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172006000200006
  • Enlaces
  • Resumen
    • In this work we consider the propagation of time-harmonic elastic waves outside of a star-shaped domain with a “linear velocity at the boundary”. We describe a new approach to investigate results of existence and uniqueness for this exterior problem. To this end, we used a method similar to the one discussed in [11, 12] which has its genesis in [13] and relies on a stationary approach of resonances. The fundamental step of our approach is to reduce the unbounded nature of the problem to a bounded domain introducing an auxiliary boundary condition of Dirichlet type. In particular, we find a large region in the complex plane which is “free” of resonances.

  • Referencias bibliográficas
    • Citas [1] S. Agmon, Lectures on Elliptic Boundary Value Problems, D. Van‏ Nostrand Company, Inc., Princeton, (1965).‏
    • [2] C. J. S. Alves, T. Ha Duong, F. Penzel, On the identification of conductive cracks. In: M.Tanaka, G.Dulikravich (Eds.), Inverse Problems‏...
    • [3] H. Amann, Parabolic evolution equations and non linear boundary‏ conditions. J. Differntial Equations. 72, pp. 201-269, (1988).‏
    • [4] K. T. Andrews, K. L. Kuttler and M. Shillor, Second order evolution‏ equations with dynamic boundary conditions. J. Math. Anal. Appl.‏...
    • [5] M. A. Astaburuaga, R. Coimbra Chrao, C. Fernndez and G. Perla‏ Menzala, Scattering frequencies for a perturbed system of elastic wave‏...
    • [6] H. Brezis and L.E. Fraenkel, A function with prescribed initial derivatives in different Banach spaces. J. Funct. Anal. 29, pp. 328-335,‏...
    • [7] R. Coimbra Charo and G. Perla Menzala, Scattering frequencies and‏ a class of perturbed systems of elastic waves. Math. Meth. Appl. Sci.‏...
    • [8] J. Cooper and W.A. Strauss, Abstract scattering theory for the periodic systems with applications to electromagnetism. Indiana Math. J.‏...
    • [9] J. Cooper, G. Perla Menzala and W. A. Strauss, On the scattering‏ frequencies of time-dependent potentials. Math. Meth. Appl. Sci 8,‏...
    • [10] L. A. Cortés-Vega, Existence of solutions for a system of elastic wave‏ equations, Proyecciones 20, pp. 305,321, (2001).‏
    • [11] L. A. Cortés-Vega, Resonant frequencies for a system of time-harmonic elastic wave. J. Math. Anal. Appl. 279, pp. 43-55, (2003).‏
    • [12] L. A. Cortés-Vega, A note on resonant frequencies for a system of‏ elastic wave equations. Int. J. Math. Math. Sci. 64, pp. 3485-3498,‏...
    • [13] L. A. Cortés-Vega, Frequncias de Espalhamento e a Propagaco de‏ Ondas Elsticas no Exterior de um Corpo Tridimensional, Ph.D. Thesis.‏...
    • [14] M. Costabel and E. P. Stephan, Integral equations for transmission‏ problems in linear elasticity, J. Integral Equations Appl 2, pp....
    • [15] G. Duvaut and J. L. Lions, Les inequations in mecanique et physique.‏ Dunond, paris (1972).‏
    • [16] J. Escher, Quasilinear parabolic sytems with dynamical boundary conditions. Comm. Part. Diff. Equations 18, pp. 1309-1364, (1993).‏
    • [17] H. O. Fattorini, Second Order Linear Differential Equations in Banach‏ Spaces. Elsevier Science Publishers B. V. Amsterdam (1985).‏
    • [18] C. Fernández and G. Perla Menzala, Resonances of an elastic resonator. Appl. Anal. 76, pp. 41-49, (2000).‏
    • [19] G. Fichera, Existence theorems in elasticity. Handbuch der Physik,‏ Springer-Verlag, Berlin, Heidelberg, New York (1973).
    • [20] G. Fichera, Existence theorems in elasticity. Unilateral constraints‏ in elasticity, S. Flgge, (Ed.), Handbuch der Physik, Springer,...
    • [21] T. Hintermann, Evolution equations with dynamic boundary conditions. Proc. Royal Soc. Edinburgh A. 113, pp. 43-60, (1989).‏
    • [22] V. D. Kupradze, Three-Dimensional Problems of the Mathematical‏ Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam (1973).‏
    • [23] V. D. Kupradze, Progress in Solid Mechanics, Vol III, in Dynamical‏ Problems in Elasticity. North-Holland, Amsterdam (1963).‏
    • [24] C. Labreuche, Generalization of the Schwarz reflection principle in‏ scattering theory for dissipative systems: apllication to purely...
    • [25] J. Lagnese, Decay of solutions of wave equations in a bounded region‏ with boundary dissipation. J. Differential Equations. 50, pp. 163-182,‏...
    • [26] P. Lax and R. S. Phillips, Scattering theory for dissipative hyperbolic‏ systems. J. Funct. Anal. 14, pp. 172-235, (1973).‏
    • [27] P. Lax and R. S. Phillips, On the scattering frequencies of the Laplace‏ operator for exterior domains. Comm. Pure Appl. Math. 25, pp....
    • [28] J. L. Lions and E. Magenes, Non-homogeneus Boundary Value Problems and Applications, vol. I and II, Springer-Verlag, New york, 1972.‏
    • [29] W. J. Liu and E. Zuazua, Uniform stabilization of the higherdimensional system of thermoelasticity with a nonlinear boundary‏ feedback,...
    • [30] B. Loe, A pole-free strip for potential scattering, J. Differential Equations. 99, pp. 112-138, (1992).‏
    • [31] J. T. Marti, Introduction to Sobolev spaces and finite element solutions‏ of elliptic boundary value problems, Acad. Press, N.Y. (1986).
    • [32] J. E. Muñoz Rivera, E. C. Lapa and R. Barreto, Decay rates for viscoelastic plates with memory. J. Elasticity. 44, pp. 61-87, (1996).‏
    • [33] J. Necas, Les Mthodos Directes em Thoria des quations Elliptiques,‏ Masson, Paris. 1967.‏
    • [34] Y. H. Pao, F. Santosa, W. W. Symes and C. Holland, (eds.), Inverse‏ problems of acoustic and elastic waves. SIAM, (1984).‏
    • [35] O. Poisson, Calcul des ples de rsonance associs la diffraction d’ondes‏ acoustiques par un obstacles en dimension deux, C.R. Acad. Sci....
    • [36] A. G. Ramm, Mathematical foundations of the singularity and eigenmode expansion methods (SEM and EEM), J. Math. Anal. Appl. 86,‏ pp....
    • [37] A. S Barreto and M. Zworski, Existence of resonances in three dimensions, Comm. Math. Phys. 173, pp. 401-415, (1995).‏
    • [38] P. Stefanov and G. Vodev, Distribution of resonances for the Neumann‏ problem in linear elasticity outside a ball, Ann. Inst. H. Poincar...
    • [39] P. Stefanov and G. Vodev, Distribution of resonances for the Neumann‏ problem in linear elasticity outside a strictly convex body, Duke...
    • [40] S. Steinberg, Meromorphic families of compact operators. Arch. Rational. Mech. Anal. 31, pp. 372-379, (1968).‏

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno