Ir al contenido

Documat


Existence of solutions for a system of elastic wave equations

  • Cortés Vega, Luis A. [1]
    1. [1] Universidad del Bío-Bío

      Universidad del Bío-Bío

      Comuna de Concepción, Chile

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 20, Nº. 3, 2001, págs. 305-321
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172001000300004
  • Enlaces
  • Resumen
    • A simple and short proof of the existence of solutions for the direct scattering problem associated with the system of elastic wave equations is shown.

  • Referencias bibliográficas
    • Citas [1] J. F Ahner, The exterior time harmonic elasticity problem with prescribed displacement vector on the boundary, Arch. Math. 27,...
    • [2] J.F Ahner and G.C. Hsiao, On the two dimensional exterior boundary value problems of elasticity, J. Apll. Math. 31, pp. 677-685, (1976).
    • [3] M.A. Astaburruaga and R. Coimbra Charao, C. Fernández and G. Perla Menzala, Scattering Frequencies for a perturbed system of elastic wave...
    • [4] R. Coimbra Charao and G. Perla Menzala, Scattering Frequencies and a class of perturbed systems of elastic waves, Math. Meth. In the Appl....
    • [5] L. A. Cortés–Vega, The exerior time-harmonic elasticity problem with prescribed stress- traction operator on the boundary, J. Math. Anal....
    • [6] L. A. Cortés–Vega, “ Frequências de espalhamento e a propagacao de ondas elásticas no exterior de um corpo tridimensional ”. Ph. D. Thesis,...
    • [7] G. Duvaut and J. L. Lions, “Les inequations in Mecanique et en Physique ”, Dunond, Paris, (1972).
    • [8] G. Fichera, “Existence theorems in elasticity ”, Handbuch der Physik, Springer-Verlag, Berlin, Heidelberg, New York, (1973).
    • [9] P. Hähner and G.C Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic waves, Inverse Prob. 9, pp. 525–534, (1993).
    • [10] P. Hähner, A uniqueness theorem in inverse scattering of elastic waves, IMA J. Of Appl. Math. 51, pp. 201–215, (1993).
    • [11] V.D. Kupradze, “Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity”, Amsterdam, North– Holand,...
    • [12] J. T. Marti, “Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems ”, Academic Press, New York,...
    • [13] M. Costabel and E.P. Stephan, Integral equations for transmission problems in linear elasticity, J. Int. Eq. and Appl. 2, pp. 211–223,...
    • [14] H. J–P. Morand and R. Ohayon, “ Fluid–Structure interactions ”. John Wiley–Sons, New York, (1995).
    • [15] J. Necas, “Les méthodos directes em théoria des équations elliptiques ”, Masson, Paris, (1967).
    • [16] Y–H. Pao, F. Santosa, W.W. Symes and C. Holland, eds., “ Inverse problems of acoustic and elastic waves ”. SIAM, (1984).
    • [17] O. Poisson, Calcul des pôles de résonance associés à la diffraction d’ondes acoustiques par un obstacle en dimension deux, C. R. Acad....
    • [18] A. G. Ramm, “Scattering by obstacles”, Riedel, Dordrecht, (1986).
    • [19] R. T. Seeley, Integral equations depending analytycally on parameter, Indag. Math. 24, pp. 434–442, (1962).
    • [20] S. Steinberg, Meromorphic families of compact operators, Arch. Rational. Mech. Anal. 31, pp. 372–379, (1968).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno