Ir al contenido

Documat


On the local convergence of a two-step steffensen-type method for solving generalized equations

  • Argyros, Ioannis K. [1] ; Hilout, Saïd [2]
    1. [1] Cameron University

      Cameron University

      Estados Unidos

    2. [2] Université Sultan Moulay Slimane

      Université Sultan Moulay Slimane

      Alkhalfia, Marruecos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 27, Nº. 3, 2008, págs. 319-330
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172008000300007
  • Enlaces
  • Resumen
    • We use a two-step Steffensen-type method [1], [2], [4], [6], [13]-[16] to solve a generalized equation in a Banach space setting under Hölder-type conditions introduced by us in [2], [6] for nonlinear equations. Using some ideas given in [4], [6] for nonlinear equations, we provide a local convergence analysis with the following advantages over related [13]-[16]: finer error bounds on the distances involved, and a larger radius of convergence. An application is also provided.

  • Referencias bibliográficas
    • Citas [1] S. Amat, S. Busquier, Convergence and numerical analysis of a family of two—step Steffensen’s methods, Comput. and Math. with...
    • [2] I. K. Argyros, A new convergence theorem for Steffensen’s method on Banach spaces and applications, Southwest J. of Pure and Appl. Math.,...
    • [3] I. K. Argyros, On the solution of generalized equations using m (m ≥ 2) Fréchet differential operators, Comm. Appl. Nonlinear Anal., 09,...
    • [4] I. K. Argyros, A unifying local—semilocal convergence analysis and applications for Newton—like methods, J. Math. Anal. Appl., 298, pp....
    • [5] I. K. Argyros, On the approximation of strongly regular solutions for generalized equations, Comm. Appl. Nonlinear Anal., 12, pp. 97—107,...
    • [6] I. K. Argyros, Approximate solution of operator equations with applications, World Scientific Publ. Comp., New Jersey, U. S. A., (2005).
    • [7] I. K. Argyros, An improved convergence analysis of a superquadratic method for solving generalized equations, Rev. Colombiana Math., 40,...
    • [8] J. P. Aubin, H. Frankowska, Set—valued analysis, Birkhäuser, Boston, (1990).
    • [9] A. L. Dontchev, W. W. Hager, An inverse function theorem for set—valued maps, Proc. Amer. Math. Soc., 121, pp. 481—489, (1994).
    • [10] M. H. Geoffroy, S. Hilout, A. Piétrus, Stability of a cubically convergent method for generalized equations, Set—Valued Anal., 14, pp....
    • [11] M. A. Hernández, The Newton method for operators with Hölder continuous first derivative, J. Optim. Theory Appl., 109, pp. 631—648, (2001).
    • [12] M. A. Hernández, M. J. Rubio, Semilocal convergence of the secant method under mild convergence conditions of differentiability, Comput....
    • [13] S. Hilout, Superlinear convergence of a family of two—step Steffensen—type method for generalized equations, to appear in International...
    • [14] S. Hilout, An uniparametric Newton—Steffensen—type methods for perturbed generalized equations, to appear in Advances in Nonlinear Variational...
    • [15] S. Hilout, Convergence analysis of a family of Steffensen—type methods for solving generalized equations, submitted, (2007).
    • [16] S. Hilout, A. Piétrus, A semilocal convergence of a secant—type method for solving generalized equations, Positivity, 10, pp. 673—700,...
    • [17] B. S. Mordukhovich, Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis, Trans....
    • [18] S. M. Robinson, Generalized equations and their solutions, part I: basic theory, Math. Programming Study, 10, pp. 128—141, (1979).
    • [19] S. M. Robinson, Generalized equations and their solutions, part II: applications to nonlinear programming, Math. Programming Study, 19,...
    • [20] R. T. Rockafellar, Lipschitzian properties of multifunctions, Nonlinear Analysis 9, pp. 867—885, (1984).
    • [21] R. T. Rockafellar, R. J—B. Wets, Variational analysis, A Series of Comprehensives Studies in Mathematics, Springer, 317, (1998).
    • [22] J. D. Wu, J. W. Luo, S. J. Lu, A unified convergence theorem, Acta Mathematica Sinica, English Series, Vol. 21, (2), pp. 315—322, (2005).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno