Ir al contenido

Documat


Fuzzy para - Lindelof spaces.

  • Baiju, T. [1] ; John, Sunil Jacob [1]
    1. [1] National Institute Of Technology

      National Institute Of Technology

      Japón

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 28, Nº. 3, 2009, págs. 253-270
  • Idioma: español
  • DOI: 10.4067/S0716-09172009000300006
  • Enlaces
  • Resumen
    • In this paper we introduce the concept of Para-Lindelof spaces in L-topological spaces by means of locally countable families of L-fuzzy sets. Further some characterizations of fuzzy para-Lindelofness and flintily para-Lindelofness in the weakly induced L-topological spaces are also obtained. More over the behavior of fuzzy para-Lindelof spaces under various types of maps such as fuzzy closed maps, fuzzy perfect maps are also investigated.

  • Referencias bibliográficas
    • Citas [1] Baiju, T. and Sunil Jacob John, Finitistic Spaces in L-topological spaces, Proyecciones Journal of Mathematics 28 (1), pp. 47—56,...
    • [2] Baiju, T. and Sunil Jacob John, Fuzzy submetacompact spaces. (communicated)
    • [3] Baiju, T. and Sunil Jacob John, Subparacompactness in L-topological spaces (communicated).
    • [4] Burke, D. K, Paralindelof spaces and closed mappings, Topology Proc. 5, pp. 47—57, (1980).
    • [5] Burke, D. K, Refinements of locally countable collections, Topology Proc. 4, pp. 19—27, (1979).
    • [6] Chang, C. L. Fuzzy Topological Spaces, J. Math. Anal. Appl. 24, pp. 182—190, (1968).
    • [7] Dieudonne, J. Une generalization des espaces compact, J. Math. Pures. Appl. 23, pp. 65—76, (1944).
    • [8] Fleissner, W. G, and Reed, G. M., Para-Lindelof spaces and spaces with a σ-locally countable base, Topology Proc. 2, pp. 89—110, (1977).
    • [9] Greever, J. On some generalized compactness properties, Publ. Res. Inst. Math. Soc., Ser. A 4 (1), 39—49, (1968).
    • [10] Hohle, U. and Rodabaugh, S. E. Mathematics of Fuzzy Sets : Logic, Topology and Measure Theory, The Hand Book of Fuzzy Set Series 3, Kluwer...
    • [11] Kubiak, T. The topological modification of the L-fuzzy unit interval, in: S.E. Rodabaugh, E.P. Klement, U. Hohle (Eds.), Applications...
    • [12] Lowen, R., Fuzzy Topological Spaces and Fuzzy Compactness, J. Math. Anal. Appl. 56, pp. 621—633, (1976).
    • [13] Luo Mao-Kang, Paracompactness in fuzzy topological spaces, J. Math. Anal. Appl. 130 (1), pp. 55—77, (1988).
    • [14] Sunil Jacob John and Baiju, T. Metacompactness in L-topological spaces, Iranian Journal of Fuzzy Systems 5 (3), pp. 71—79, (2008).
    • [15] Wang, G. J. On the structure of fuzzy lattices, Acta math. Sinica 29, pp. 539—543, (1986).
    • [16] Wang, G. J. Theory of L-fuzzy topological spaces, Shaanxi Normal University Pub., Xian (1988).
    • [17] Ying - Ming Liu and Mao-Kang Luo, Fuzzy Topology, Advances in Fuzzy SystemsApplications and Theory Vol. 9, World Scientific, (1997).
    • [18] Zadeh, L. A. Fuzzy sets, Information and Control 8, pp. 338—353, (1965).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno