Ir al contenido

Documat


Sum divisor cordial labeling for star and ladder related graphs

  • Lourdusamy, A. [1] ; Patrick, F. [1]
    1. [1] St Xavier’s College

      St Xavier’s College

      India

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 35, Nº. 4, 2016, págs. 437-455
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172016000400006
  • Enlaces
  • Resumen
    • A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2, . . . , |V(G)|} such that an edge uv is assigned the label 1 if 2 divides f (u) + f (v) and 0 otherwise; and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we prove that D2(K1,n), S' (K1,n), D2(Bn,n), DS(Bn,n), S' (Bn,n), S(Bn,n), < K(1)1,nΔK(2)1,n>, S(Ln), Ln O K1, SLn, TLn, TLn O Ki and CHn are sum divisor cordial graphs.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno