Ir al contenido

Documat


On (γ,δ) -Bitopological semi-closed set via topological ideal

  • Tripathy, Binod Chandra [1] ; Acharjee, Santanu [1]
    1. [1] Institute of Advanced Study in Science and Technology

      Institute of Advanced Study in Science and Technology

      India

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 33, Nº. 3, 2014, págs. 245-257
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172014000300002
  • Enlaces
  • Resumen
    • In this paper we introduce a new class of generalized closed sets in bitopological space using local function, two extension operators and semi-open sets. We have also investigated some properties in subspace bitopology defining kernel and image.

  • Referencias bibliográficas
    • Citas [1] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japon.,...
    • [2] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19, pp. 89-96, (1970).
    • [3] K. Kuratowski, Topologie I, warszawa, (1933).
    • [4] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer.Math.Monthly, 97, pp. 295-310, (1990).
    • [5] S. Kasahara, Operation-compact spaces, Math. Japon, 24, pp. 97-105, (1979).
    • [6] H. Ogata, operations on topological spaces and Associated topology, Math. Japon, 36, pp. 175-184, (1991).
    • [7] J. Tong, Expansion of open sets and decomposition of continuous mappings, Expansion of open sets and decomposition of continuous mappings,...
    • [8] B. C. Tripathy and B. Hazarika, Paranormed I-convergent sequences spaces, Math. Slovaca, 59 (4), pp. 485-494, (2009).
    • [9] B. C. Tripathy and B. Hazarika, I-monotonic and I-convergent sequences, Kyungpook Math. Journal, 51 (2), pp. 233-239, (2011).
    • [10] B. C. Tripathy and S. Mahanta, On I-acceleration convergence of sequences, Jour. Franklin Inst., 347, pp. 591-598, (2010).
    • [11] B. C. Tripathy, M. Sen and S. Nath, I-convergence in probabilistic nnormed space, Soft Computing,ID 10.1007/s00500-011-0799-8, (2012).
    • [12] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (3), pp. 71-89, (1963).
    • [13] B. Dvalishvili; Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures and Applications; Elsevier, (2005).
    • [14] S. Acharjee and B. C. Tripathy, On continuities and separation axioms of (γ, δ)-Bitopological Semi-closed-set (under communication)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno