Ir al contenido

Documat


Odd harmonious labeling of some cycle related graphs

  • Jeyanthi, P. [1] ; Philo, S. [2]
    1. [1] Govindammal Aditanar College for Women.
    2. [2] PSN College of Engineering and Technology.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 35, Nº. 1, 2016, págs. 85-98
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172016000100006
  • Enlaces
  • Resumen
    • A graph G(p, q) is said to be odd harmonious if there exists an in-jection f : V(G)→ {0,1, 2, ..., 2q — 1} such that the induced function f * : E(G) → {1, 3, ... 2q — 1} defined by f * (uv) = f (u) + f (v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper we prove that any two even cycles sharing a common vertex and a common edge are odd harmonious graphs.

  • Referencias bibliográficas
    • Citas [1] M. E. Abdel-Aal, Odd Harmonious Labelings of Cyclic Snakes, International Journal on applications of Graph Theory in Wireless...
    • [2] M. E. Abdel-Aal, New Families of Odd Harmonious Graphs, International Journal of Soft Computing, Mathematics and Control, 3 (1), pp. 1—13,...
    • [3] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronics Journal of Combinatorics, (2015) #DS6.
    • [4] R. L. Graham and N. J. A Sloane, On Additive bases and Harmonious Graphs, SIAM J. Algebr. Disc. Meth., 4, pp. 382—404, (1980).
    • [5] A. Gusti Saputri, K. A. Sugeng and D. Froncek, The Odd Harmonious Labeling of Dumbbell and Generalized Prism Graphs, AKCE Int. J. Graphs...
    • [6] F. Harary, Graph Theory, Addison-Wesley, Massachusetts, (1972).
    • [7] Z. Liang, Z. Bai, On the Odd Harmonious Graphs with Applications, J. Appl. Math. Comput., 29, pp. 105—116, (2009).
    • [8] P. Jeyanthi , S. Philo and Kiki A. Sugeng, Odd harmonious labeling of some new families of graphs, SUT Journal of Mathematics., Vol.51,...
    • [9] P. Selvaraju, P. Balaganesan and J.Renuka, Odd Harmonious Labeling of Some Path Related Graphs, International J. of Math. Sci. & Engg.Appls.,...
    • [10] S. K. Vaidya and N. H. Shah, Some New Odd Harmonious Graphs, International Journal of Mathematics and Soft Computing, 1, pp.9—16, (2011).
    • [11] S. K. Vaidya, N. H. Shah, Odd Harmonious Labeling of Some Graphs, International J. Math. Combin., 3, pp. 105—112, (2012).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno