Ir al contenido

Documat


Generalized Ulam—Hyers stabilities of quartic derivations on Banach algebras

  • Eshaghi Gordji, Madjid [1] ; Ghobadipour, N. [2]
    1. [1] Semnan University

      Semnan University

      Irán

    2. [2] Urmia University

      Urmia University

      Irán

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 29, Nº. 3, 2010, págs. 209-226
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172010000300005
  • Enlaces
  • Resumen
    • Let A , B be two rings. A mapping δ : A → B is called quartic derivation, if δ is a quartic function satisfies δ(ab) = a4δ(b) + δ(a)b4 for all a, b ∈ A. The main purpose of this paper to prove the generalized Hyers—Ulam—Rassias stability of the quartic derivations on Banach algebras.

  • Referencias bibliográficas
    • Citas Abbaspour Tabadkan, Gh., Rahmani, A. Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stability of generalized quadratic functional equations,...
    • Abbaszadeh, S. Intuitionistic fuzzy stability of a quadratic and quartic functional equation, Int. J. Nonlinear Anal. Appl. 1, 2, pp. 100—124,(2010).
    • Badora, R. On approximate derivations, Math. Inequal. Appl. 9 (2006) 167—173.
    • Bavand Savadkouhi, M., Gordji, M. E., Rassias, J. M., Ghobadipour, N. Approximate ternary Jordan derivations on Banach ternary algebras, J....
    • Belaid, B., Elhoucien, E. Ulam-Gavruta-Rassias stability of the Pexider functional equation, Intern. J. Math. Sta. 7(Fe07), pp. 27-39, (2007).
    • Belaid, B., Elhoucien, E., Rassias, J. M. The superstability of d'Alembert's functional equation on the Heisenberg group, Appl. Math....
    • Cao, H.X., Lv, J. R., Rassias, J.M. Superstability for generalized module left derivations and generalized module derivations on a banach...
    • Cao, H. X. , Lv, J. R., Rassias, J. M., Superstability for generalized module left derivations and generalized module derivations on a banach...
    • Czerwik, S. Stability of functional equations of Ulam-Hyers-Rassias type. Hadronic Press, Palm Harbor, Florida, (2003).
    • Eshaghi Gordji, M., Bavand Savadkouhi, M. On approximate cubic homomorphisms, Advance difference equations, Vol. 2009, Article ID 618463,...
    • Eshaghi Gordji, M., Rassias, J. M., Ghobadipour, N. Generalized Hyers— Ulam stability of generalized (n,k)—derivations, Abstract and Applied...
    • Eshaghi Gordji, M., Karimi, T., Kaboli Gharetapeh, S. Approximately n— Jordan homomorphisms on Banach algebras, J. Ineq. Appl. Vol. 2009,...
    • Eshaghi Gordji, M., Ghaemi, M. B., Kaboli Gharetapeh, S., Shams, S., Ebadian, A. On the stability of J∗−derivations, Journal of Geometry and...
    • Eshaghi Gordji, M., Ghobadipour, N. Stability of (α, β, γ)−derivations on Lie C∗−algebras, International Journal of Geometric Methods in Modern...
    • Eshaghi Gordji, M., Kaboli Gharetapeh, S., Karimi , T., Rashidi. E., Aghaei, M. Ternary Jordan derivations on C∗−ternary algebras, Journal...
    • Eshaghi Gordji, M., Moslehian, M. S. A trick for investigation of approximate derivations, Math. Commun. 15, No. 1, pp. 99-105, (2010).
    • Eshaghi Gordji, M., Khodaei, H. On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations, Abstract and Applied Analysis,...
    • Farokhzad, R., Hosseinioun, S. A. R. Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach,...
    • Faiziev, V., Rassias, J. M. Stability of generalized additive equations on Banach spaces and groups, Journal of Nonlinear Functional Analysis...
    • Gavruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184, pp. 431-436,...
    • Gavruta, P. An answer to a question of John M. Rassias concerning the stability of Cauchy equation, in: Advances in Equations and Inequalities,...
    • Gavruta. P., L. Gavruta, L. A new method for the generalized Hyers-UlamRassias stability, Int. J. Nonlinear Anal. Appl. 1, 2, pp. 11—18, (2010).
    • Gordji, M. E., Kaboli Gharetapeh, S., Rassias, J. M., Zolfaghari, S. Solution and Stability of a Mixed type Additive, Quadratic, and Cubic...
    • Gordji, M. E., Najati, A. Approximately J∗-homomorphisms: A fixed point approach, Journal of Geometry and Physics 60, pp. 809—814, (2010).
    • Gordji , M. E., Rassias, J. M., Savadkouhi, M. B. Approximation of the Quadratic and Cubic functional equations in RN-spaces, European Journal...
    • Gordji, M.E., Zolfaghari, S., Rassias, J. M., Savadkouhi, M. B. Solution and Stability of a Mixed type Cubic and Quartic functional equation...
    • Hyers, D.H. On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27, pp. 222—224, (1941).
    • Isac, G., Rassias, Th. M. On the Hyers-Ulam stability of additive mappings, J. Approx. Theorey 72, pp. 131-137, (1993).
    • K. Jun, K., Kim, H., Rassias, J. Extended Hyers-Ulam stability for Cauchy-Jensen mappings, J. Diff. Equ. Appl. 2007, 1-15, [Doi:10.1080/10236190701464590].
    • Khodaei, H., Rassias, Th. M. Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1, 1, pp. 22—41,...
    • Kim, H. M., Rassias, J. M., Cho, Y. S., Stability Problem of Ulam for Euler-Lagrange Quadratic Mappings, Journal of Inequalities and Appl.,...
    • Kominek, Z. On a local stability of the Jensen functional equation, Demonstratio Math. 22, pp. 499-507; (1989).
    • Lee, Y., Chung, S., Stability of an Euler-Lagrange-Rassias equation in the spaces of generalized functions, Appl. Math. Letters, [Doi: 10.1016/j.aml.2007.07.022],...
    • Miura, T., Hirasawa, G., Takahasi, S. E. A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319, pp. 522—530, (2006).
    • Nakmahachalasint, P. On the generalized Ulam-Gavruta-Rassias stability of mixed-type linear and Euler-Lagrange-Rassias functional equations,...
    • Nakmahachalasint, P. Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabilities of additive functional equation in several variables ,International...
    • Park, C., Najati, A. Homomorphisms and derivations in C*-algebras, Abstr. Appl. Anal., Article ID 80630, (2007).
    • Park, C. Lie ∗—homomorphisms between Lie C*—algebras and Lie ∗— derivations on Lie C*—algebras, J. Math. Anal. Appl. 293, pp. 419—434, (2004).
    • Park, W. G., Bae, J. H. On a bi-quadratic functional equation and its stability Nonlinear Anal. 62, no. 4, pp. 643—654, (2005).
    • Park, C., Gordji, M. E., Comment on Approximate ternary Jordan derivations on Banach ternary algebras [Bavand Savadkouhi et al. J. Math. Phys....
    • Park, C., Najati, A. Generalized additive functional inequalities in Banach algebras, Int. J. Nonlinear Anal. Appl. 1, 2, pp. 54—62, (2010).
    • Park, C., Rassias, J. M. Stability of the Jensen-type functional equation in C*-algebras: A Fixed Point Approach, Abstract and Applied Analysis,...
    • Park, C., Rassias, Th. M. Isomorphisms in unital C∗-algebras, Int. J. Nonlinear Anal. Appl. 1 (2010), 2, 1—10.
    • Pietrzyk, A. Stability of the Euler-Lagrange-Rassias functional equation, Demonstratio Math. 39, 523-530, (2006).
    • Rassias, J. M. On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46, pp. 126—130, (1982).
    • Rassias, J. M. On Approximation of approximately linear mappings by linear mappings, Bull. Sc. Math. 108, pp. 445—446, (1984).
    • Rassias, J. M. On a new approximation of approximately linear mappings by linear mappings, Discuss. Math. 7, pp. 193—196, (1985).
    • Rassias, J. M. Solution of a problem of Ulam, J. Approx. Theory. 57 (3), pp. 268—273, (1989).
    • Rassias, J. M. On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20 (2), pp. 185-190, (1992).
    • Rassias, J. M. Solution of a stability problem of Ulam, Discuss. Math. 12, pp. 95-103, (1992).
    • Rassias, J. M. On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28,...
    • Rassias, J. M. On the stability of a multi-dimensional Cauchy type functional equation, in: Geometry, Analysis and Mechanics, World Sci. Publ.,...
    • Rassias, J. M. Complete solution of the multi-dimensional problem of Ulam, Discuss. Math. 14, pp. 101-107, (1994).
    • Rassias, J. M., Lee, J., Kim, H. M. Refined Hyers-Ulam stability for Jensen type mappings, Journal of the Chungcheong Mathematical Society,...
    • Rassias, J. M., Rassias, M. J. On some approximately quadratic mappings being exactly quadratic , J. Ind. Math. Soc. 69, pp. 155-160, (2002).
    • Rassias, Th. M. The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2), pp. 352-378, (2000).
    • Rassias, Th. M. Functional equations, Inequalities and applications, Kluwer Academic Publishers, Dordrecht, Boston and London, (2003).
    • Rassias, Th. M., On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai Math. 43(3), pp. 89-124,...
    • Rassias, Th. M., On the stability of the linear mapping in Banach spaces, Proc. Amer.Math. Soc. 72, pp. 297-300, (1978).
    • Ravi, K., Arunkumar, M., Rassias, J. M. Ulam stability for the orthogonally general Euler—Lagrange type functional equation, Int. J. Math....
    • Semrl, P. The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory,...
    • Sibaha, M. A., Bouikhalene, B., Elquorachi, E. Ulam—Gavruta—Rassias stability for a linear functional equation, in: Euler’s Issue FIDA, in:...
    • Singer, I. M., Wermer, J. Derivations on commutative normed algebras, Math. Ann. 129, pp. 260—264, (1955).
    • Ulam, S. M. A Collection of the Mathematical Problems, Interscience Publ., New York, (1940).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno