Ir al contenido

Documat


Even vertex equitable even labeling for snake related graphs.

  • Lourdusamy, A. [1] ; Wency, S. Jenifer [1] ; Patrick, F. [1]
    1. [1] St. Xavier’s College (Autonomous).
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 1, 2019, págs. 177-189
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172019000100177
  • Enlaces
  • Resumen
    • Let G be a graph with p vertices and q edges and A = {0,2,4,···, q+1} if q is odd or A = {0,2,4,···,q} if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling f : V (G) → A that induces an edge labeling f∗ defined by f∗(uv)=f(u)+f(v) for all edges uv such that for all a and b in A, |vf(a)−vf(b)|≤1 and the induced edge labels are 2,4,···,2q, where vf(a) be the number of vertices v with f(v)=a for a ∈ A. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph. In this paper, we prove that S(D(Qn)), S(D(Tn)), DA(Qm) ʘ nK1, DA(Tm) ʘ nK1, S(DA(Qn)) and S(DA(Tn)) are an even vertex equitable even graphs.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno