Ir al contenido

Documat


Parliamentary optimization to build personalized learning paths: case study in web engineering curriculum

  • Autores: Luis de Marcos Ortega Árbol académico, Antonio García Cabot Árbol académico, Eva García López Árbol académico, José Amelio Medina Merodio Árbol académico
  • Localización: The International journal of engineering education, ISSN-e 0949-149X, Vol. 31, no. 4, 2015, págs. 1092-1105
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we present a practical application of POA (Parliamentary Optimization Algorithm) for creating personalizedlearning paths in online learning. The objective of building a personalized learning path is to produce a suitable sequence oflearning units for a student to work with. We present and tune the parliamentary metaheuristic for a practical instance ofthe sequencing problem in a web engineering master programme and compare it with standard versions of other wellestablished metaheuristics (PSO and genetic algorithms). Results suggest that permut-POA deals satisfactorily withsequencing problems and it is easy to fine tune, and also that it outperforms the other optimizers.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno