Ir al contenido

Documat


Exact computation for existence of a knot counterexample

  • Autores: K. Marinelli, T. J. Peters
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 20, Nº. 1, 2019, págs. 251-264
  • Idioma: inglés
  • DOI: 10.4995/agt.2019.10928
  • Enlaces
  • Resumen
    • Previously, numerical evidence was presented of a self-intersecting Bezier curve having the unknot for its control polygon. This numerical demonstration resolved open questions in scientic visualization, but did not provide a formal proof of self-intersection. An example with a formal existence proof is given, even while the exact self-intersection point remains undetermined.

  • Referencias bibliográficas
    • Cybergloves. http://www.cyberglovesystems.com/cyberglove-iii/
    • ManusVR. https://manus-vr.com/
    • Virtual motion labs. http://www.virtualmotionlabs.com/
    • N. Amenta, T. J. Peters and A. C. Russell, Computational topology: Ambient isotopic approximation of 2-manifolds, Theoretical Computer Science...
    • L. E. Andersson, S. M. Dorney, T. J. Peters and N. F. Stewart, Polyhedral perturbations that preserve topological form, CAGD 12, no. 8 (1995),...
    • L. E. Andersson, T. J. Peters and N. F. Stewart, Selfintersection of composite curves and surfaces, CAGD 15 (1998), 507–527.
    • M. A. Armstrong, Basic Topology, Springer, New York, 1983.
    • R. H. Bing, The Geometric Topology of 3-Manifolds, American Mathematical Society, Providence, RI, 1983.
    • J. Bisceglio, T. J. Peters, J. A. Roulier and C. H. Sequin, Unknots with highly knotted control polygons, CAGD 28, no. 3 (2011), 212–214....
    • F. Chazal and D. Cohen-Steiner, A condition for isotopic approximation, Graphical Models 67, no. 5 (2005), 390–404. https://doi.org/10.1016/j.gmod.2005.01.005
    • T. Culver, J. Keyser and D. Manocha, Exact computation of the medial axis of a polyhedron, Computer Aided Geometric Design 21, no. 1 (2004),...
    • T. Etiene, L. G. Nonato, C. E. Scheidegger, J. Tierny, T.J. Peters, V. Pascucci, R. M.Kirby and C. T. Silva, Topology verification for isosurface...
    • G. E. Farin, Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide, Academic Press, Inc., 1996.
    • J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics: Principles and Practice (2Nd Ed.), Addison-Wesley Longman Publishing...
    • D. Jiang and N. F. Stewart, Backward error analysis in computational geometry, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp.50–59.
    • K. E. Jordan, J. Li, T. J. Peters and J. A. Roulier, Isotopic equivalence from Bézier curve subdivision for application to high performance...
    • K. E. Jordan, L. E. Miller, E. L. F. Moore, T. J. Peters and A. Russell, Modeling time and topology for animation and visualization with examples...
    • L. Kettner, K. Mehlhorn, S. Pion, S. Schirra and C. Yap, Classroom examples of robustness problems in geometric computations, Computational...
    • R. M. Kirby and C. T. Silva, The need for verifiable visualization, IEEE Computer Graphics and Applications September/October (2008), 1–9.
    • J. M. Lane and R. F. Riesenfeld, A theoretical development for the computer generation and display of piecewise polynomial surfaces, IEEE,...
    • J. Li and T. J. Peters, Isotopic convergence theorem, Journal of Knot Theory and Its Ramifications 22, no. 3 (2013). https://doi.org/10.1142/s0218216513500120
    • J. Li, T. J. Peters, D. Marsh and K. E. Jordan, Computational topology counter examples with 3D visualization of Bézier curves, Applied General...
    • G. McGill, Molecular movies coming to a lecture near you, Cell 133, no. 7 (2008), 1127–1132. https://doi.org/10.1016/j.cell.2008.06.013
    • J. Munkres, Topology, Prentice Hall, 2nd edition, 1999.
    • M. Neagu, E. Calcoen and B. Lacolle, Bézier curves: topological convergence of the control polygon, 6th Int. Conf. on Mathematical Methods...
    • J. Peters and X. Wu, On the optimality of piecewise linear max-norm enclosures based on SLEFES, International Conference on Curves and Surfaces,...
    • L. Piegl and W. Tiller, The NURBS Book, Springer, New York, 1997.
    • C. H. Sequin, Spline knots and their control polygons with differing knottedness, http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-152.html
    • M. Wertheim and K. Millett, Where the wild things are: An interview with Ken Millett, Cabinet 20, 2006.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno