Ir al contenido

Documat


Computational Topology Counterexamples with 3D Visualization of Bézier Curves

  • Li, J. [1] ; Peters, T.J. [1] ; Marsh, D. [2] ; Jordan, K.E. [3]
    1. [1] University of Connecticut

      University of Connecticut

      Town of Mansfield, Estados Unidos

    2. [2] Pratt and Whitney
    3. [3] IBM T.J. Watson Research, Cambridge Research Center
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 13, Nº. 2, 2012, págs. 115-134
  • Idioma: inglés
  • DOI: 10.4995/agt.2012.1624
  • Enlaces
  • Resumen
    • For applications in computing, Bézier curves are pervasive and are defined by a piecewise linear curve L which is embedded in R3 and yields a smooth polynomial curve C embedded in R3. It is of interest to understand when L and C have the same embeddings. One class ofc ounterexamples is shown for L being unknotted, while C is knotted. Another class of counterexamples is created where L is equilateral and simple, while C is self-intersecting. These counterexamples were discovered using curve visualizing software and numerical algorithms that produce general procedures to create more examples.

  • Referencias bibliográficas
    • C .C. Adams, The Knot Book: An Elementary Introduction To The Mathematical Theory Of Knots, American Mathematical Society, 2004.
    • J. W. Alexander and G. B. Briggs, On types of knotted curves Annals of Mathematics 28 (1926-1927), 562–586.
    • L. E. Andersson, T. J. Peters and N. F. Stewart, Selfintersection of composite curves and surfaces, CAGD 15 (1998), 507–527.
    • M. A. Armstrong, Basic Topology, Springer, New York, 1983. http://dx.doi.org/10.1007/978-1-4757-1793-8
    • R. H. Bing, The Geometric Topology of 3-Manifolds, American Mathematical Society, Providence, RI, 1983.
    • J. Bisceglio, T. J. Peters, J. A. Roulier and C. H. Sequin, Unknots with highly knotted control polygons, CAGD 28, no. 3 (2011), 212–214.
    • G. Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, CA, 1990.
    • J. Hass, J. C. Lagarias and N. Pippenger, The computational complexity of knot and link problems, Journal of the ACM, 46, no, 2 (1999), 185–221....
    • K. E. Jordan, R. M. Kirby, C. Silva and T. J. Peters, Through a new looking glass*: Mathematically precise visualization, SIAM News 43, no....
    • K. E. Jordan, L. E. Miller, E. L. F. Moore, T. J. Peters and A. C. Russell, Modeling time
    • and topology for animation and visualization with examples on parametric geometry,
    • Theoretical Computer Science 405 (2008), 41–49. http://dx.doi.org/10.1016/j.tcs.2008.06.023
    • K. E. Jordan, L. E. Miller, T. J. Peters and A. C. Russell, Geometric topology and visualizing 1-manifolds, In V. Pascucci, X. Tricoche, H....
    • C. Livingston, Knot Theory, volume 24 of Carus Mathematical Monographs, Mathematical Association of America, Washington, DC, 1993.
    • T. J. Peters and D. Marsh, Personal home page of T. J. Peters. http://www.cse.uconn.edu/.
    • L. Piegl and W. Tiller, The NURBS Book, Springer, New York, 2nd edition, 1997. R. Scharein, The knotplot site, http://www.knotplot.com/.
    • C. H. Sequin, Spline knots and their control polygons with differing knottedness, http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-152.html.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno