Ir al conteni
d
o
B
uscar
R
evistas
T
esis
Libr
o
antiguo
Co
n
gresos
A
u
tores
Ayuda
Cambiar idioma
Idioma
català
Deutsch
English
español
euskara
français
galego
italiano
português
română
Cambiar
Sandwich theorem for reciprocally strongly convex functions
Autores:
Mireya Bracamonte
,
Jesús Medina Moreno
,
José Giménez
Localización:
Revista Colombiana de Matemáticas
,
ISSN-e
0034-7426,
Vol. 52, Nº. 2, 2018
,
págs.
171-184
Idioma:
inglés
DOI
:
10.15446/recolma.v52n2.77157
Títulos paralelos:
Teorema del Sandwich para funciones fuerte-recíprocamente convexas
Enlaces
Texto completo
Referencias bibliográficas
M. Avriel, W.T. Diewert, S. Schaible, and I. Zang, Generalized concavity, 1998.
K. Baron, J. Matkowski, and K. Nikodem, A sandwich with convexity, Math. Pannica 5/1 (1994), 139–144.
M. Bessenyei and Zs. Páles, Characterization of convexity via Hadamard's inequality, Math. Inequal. Appl. 9 (2006), 53–62.
M. Bracamonte, J. Giménez, and J. Medina, Hermite-Hadamard and Fejér type inequalities for strongly harmonically convex functions, Submitted...
M. Bracamonte, J. Giménez, J. Medina, and M. Vivas, A sandwich theorem and stability result of Hyers-Ulam type for harmonically convex functions,...
A. Daniilidis and P. Georgiev, Approximately convex functions and approximately monotonic operators, Nonlin. Anal., 66 (2007), 547–567.
S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Mathematica Moravica (2015), 107–121.
S. Dragomir, Inequalities of Jensen type for HA-convex functions, RGMIA Monographs, Victoria University (2015).
S. Dragomir and C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, 2000.
A. Eberhard and Pearce C. E. M., Class inclusion properties for convex functions, in progress in optimization, Appl. Optim, Kluwer Acad. Publ.,...
A. Ghazanfari and S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, 2012.
G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press., 1934.
J. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis, Springer-Verlag, Berlin-Heidelberg, 2001.
D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. USA 27 (1941), 222–224.
D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc.3 (1952), 821–828.
I. Iscan, Hermite-Hadamard type inequalities for harmonically (α,m) convex functions, Contemp. Anal. Appl. Math., 1 (2) (2013), 253–264.
I. Iscan, New estimates on generalization of some integral inequalities for s-convex functions and their applications, Int. J. Pure Appl....
I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics Volume 43...
M.V. Jovanovic, A note on strongly convex and strongly quasiconvex functions, Notes 60 (1996), 778–779.
S.M. Jung, Hyers-ulam-rassias stability of functional equations in mathematical analysis, Hadronic Press, Inc., Palm Harbor, 2001.
M. Kuczma, An introduction to the theory of functional equations and inequalities, Cauchy's equation and Jensen's inequality, Second...
N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes mathematicae,Volume 80, Issue 1 (2010), 193–199.
F. C. Mitroi-Symeonidis, Convexity and sandwich theorems, European Journal of Research in Applied Sciences, Vol. 1, No. 1 (2015), 9–11.
C. Niculescu and L. Persson, Convex functions and their applications, A Contemporary Approach, CMS Books in Mathematics, vol. 23, Springer,...
K. Nikodem and S. Wa¸sowicz, A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math. 49 (1995), 160–164.
M. A. Noor, K. I. Noor, and M. U. Awan, Some characterizations of harmonically log-convex functions, Proc. Jangjeon Math. Soc., 17(1) (2014),...
M. A. Noor, K. I. Noor, and M. U. Awan, Some integral inequalities for harmonically logarithmic h-convex functions, preprint (2014).
B. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Dokl. Akad. Nauk. SSSR 166 (1966),...
A. Roberts and D. Varberg, Convex functions, Academic Press, New York-London, 1973.
R.T. Rockafellar, Monotone operator and the proximal point algorithm, SIAM J. Control Optim 14 (1976), 888–898.
S.M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.
S. Varosanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303 – 311.
T.-Y Zhang, A.-P. Ji, and F. Qi, Integral inequalities of Hermite-Hadamard type for harmonically quasiconvex functions, Proc. Jangjeon Math....
Acceso de usuarios registrados
Identificarse
¿Olvidó su contraseña?
¿Es nuevo?
Regístrese
Ventajas de registrarse
Mi Documat
S
elección
Opciones de artículo
Seleccionado
Opciones de compartir
Facebook
Twitter
Opciones de entorno
Sugerencia / Errata
©
2008-2024
Fundación Dialnet
· Todos los derechos reservados
Accesibilidad
Aviso Legal
Coordinado por:
I
nicio
B
uscar
R
evistas
T
esis
Libr
o
antiguo
A
u
tores
Ayuda
R
e
gistrarse
¿En qué podemos ayudarle?
×
Buscar en la ayuda
Buscar