Ir al contenido

Documat


Sandwich theorem for reciprocally strongly convex functions

  • Autores: Mireya Bracamonte, Jesús Medina Moreno Árbol académico, José Giménez
  • Localización: Revista Colombiana de Matemáticas, ISSN-e 0034-7426, Vol. 52, Nº. 2, 2018, págs. 171-184
  • Idioma: inglés
  • DOI: 10.15446/recolma.v52n2.77157
  • Títulos paralelos:
    • Teorema del Sandwich para funciones fuerte-recíprocamente convexas
  • Enlaces
  • Referencias bibliográficas
    • M. Avriel, W.T. Diewert, S. Schaible, and I. Zang, Generalized concavity, 1998.
    • K. Baron, J. Matkowski, and K. Nikodem, A sandwich with convexity, Math. Pannica 5/1 (1994), 139–144.
    • M. Bessenyei and Zs. Páles, Characterization of convexity via Hadamard's inequality, Math. Inequal. Appl. 9 (2006), 53–62.
    • M. Bracamonte, J. Giménez, and J. Medina, Hermite-Hadamard and Fejér type inequalities for strongly harmonically convex functions, Submitted...
    • M. Bracamonte, J. Giménez, J. Medina, and M. Vivas, A sandwich theorem and stability result of Hyers-Ulam type for harmonically convex functions,...
    • A. Daniilidis and P. Georgiev, Approximately convex functions and approximately monotonic operators, Nonlin. Anal., 66 (2007), 547–567.
    • S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Mathematica Moravica (2015), 107–121.
    • S. Dragomir, Inequalities of Jensen type for HA-convex functions, RGMIA Monographs, Victoria University (2015).
    • S. Dragomir and C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, 2000.
    • A. Eberhard and Pearce C. E. M., Class inclusion properties for convex functions, in progress in optimization, Appl. Optim, Kluwer Acad. Publ.,...
    • A. Ghazanfari and S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, 2012.
    • G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press., 1934.
    • J. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis, Springer-Verlag, Berlin-Heidelberg, 2001.
    • D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. USA 27 (1941), 222–224.
    • D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc.3 (1952), 821–828.
    • I. Iscan, Hermite-Hadamard type inequalities for harmonically (α,m) convex functions, Contemp. Anal. Appl. Math., 1 (2) (2013), 253–264.
    • I. Iscan, New estimates on generalization of some integral inequalities for s-convex functions and their applications, Int. J. Pure Appl....
    • I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics Volume 43...
    • M.V. Jovanovic, A note on strongly convex and strongly quasiconvex functions, Notes 60 (1996), 778–779.
    • S.M. Jung, Hyers-ulam-rassias stability of functional equations in mathematical analysis, Hadronic Press, Inc., Palm Harbor, 2001.
    • M. Kuczma, An introduction to the theory of functional equations and inequalities, Cauchy's equation and Jensen's inequality, Second...
    • N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes mathematicae,Volume 80, Issue 1 (2010), 193–199.
    • F. C. Mitroi-Symeonidis, Convexity and sandwich theorems, European Journal of Research in Applied Sciences, Vol. 1, No. 1 (2015), 9–11.
    • C. Niculescu and L. Persson, Convex functions and their applications, A Contemporary Approach, CMS Books in Mathematics, vol. 23, Springer,...
    • K. Nikodem and S. Wa¸sowicz, A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math. 49 (1995), 160–164.
    • M. A. Noor, K. I. Noor, and M. U. Awan, Some characterizations of harmonically log-convex functions, Proc. Jangjeon Math. Soc., 17(1) (2014),...
    • M. A. Noor, K. I. Noor, and M. U. Awan, Some integral inequalities for harmonically logarithmic h-convex functions, preprint (2014).
    • B. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Dokl. Akad. Nauk. SSSR 166 (1966),...
    • A. Roberts and D. Varberg, Convex functions, Academic Press, New York-London, 1973.
    • R.T. Rockafellar, Monotone operator and the proximal point algorithm, SIAM J. Control Optim 14 (1976), 888–898.
    • S.M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.
    • S. Varosanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303 – 311.
    • T.-Y Zhang, A.-P. Ji, and F. Qi, Integral inequalities of Hermite-Hadamard type for harmonically quasiconvex functions, Proc. Jangjeon Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno