La estimación de precios de inmuebles mediante la utilización de métodos objetivos es de interés para compradores, vendedores y para la propia Administración. Existen diferentes metodologías que permiten la determinación del precio de un inmueble, siendo numerosas las aportaciones cuyo propósito es la estimación de precios de inmuebles residenciales. No obstante, el presente trabajo es pionero en la aplicación de técnicas de Inteligencia Artificial (IA) para la determinación de precios de locales comerciales. Se presenta un estudio de esta tipología de inmueble en la ciudad de Córdoba (España). Los resultados evidencian que las Redes Neuronales (RN) constituyen una alternativa atractiva a los tradicionales Modelos Hedónicos (MH), registrando un mejor ajuste a las no linealidades del mercado y resultando con menores errores. Asimismo, se obtienen los precios implícitos correspondientes a los atributos determinantes del precio de un local comercial a partir de la ecuación de la RN diseñada.
Several agents, such as buyers and sellers, or local or tax authorities need to estimate the value of properties. There are different approaches to obtain the market price of a dwelling. Many papers have been produced in the academic literature for such purposes, but, these are, almost always, oriented to estimate hedonic prices of residential properties, such as houses or apartments. Here these methodologies are used in the field of estimate market price of commercial premises, using AI techniques. A case study is developed in Cordova —city in the South of Spain—. Neural Networks are an attractive alternative to the traditional hedonic modelling approaches, as they are better adapted to non-linearities of causal relationships and they also produce smaller valuation errors. It is also possible, from the NN model, to obtain implicit prices associated to the main attributes that can explain the variability of the market price of commercial properties.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados