Ir al contenido

Documat


Evidence functions: a compositional approach to information

    1. [1] Universitat Politècnica de Catalunya

      Universitat Politècnica de Catalunya

      Barcelona, España

    2. [2] Universitat de Girona

      Universitat de Girona

      Gerona, España

  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 42, Nº. 2, 2018, págs. 101-124
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The discrete case of Bayes’ formula is considered the paradigm of information acquisition. Prior and posterior probability functions, as well as likelihood functions, called evidence functions, are compositions following the Aitchison geometry of the simplex, and have thus vector character. Bayes’ formula becomes a vector addition. The Aitchison norm of an evidence function is introduced as a scalar measurement of information. A fictitious fire scenario serves as illustration. Two different inspections of affected houses are considered. Two questions are addressed: (a) which is the information provided by the outcomes of inspections, and (b) which is the most informative inspection.

  • Referencias bibliográficas
    • Aitchison, J. (1982). The statistical analysis of compositional data (with discussion). Journal of the Royal Statistical Society, Series B...
    • Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika, 70, 57–65.
    • Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability. London (UK): Chapman...
    • Aitchison, J. (1994). Multivariate analysis and its applications, Volume 24 of Lecture Notes–Monograph Series, Chapter Principles of compositional...
    • Aitchison, J. and Kay, J. (1975). Principles, practice and performance in decision-making in clinical medicine. In K. C. Bowen and D. G. White...
    • Aitchison, J., Kay, J. W. and Lauder, I. J. (2005). Statistical Concepts and Applications in Clinical Medicine. Chapman and Hall/CRC.
    • Ash, R. B. (1990). Information theory. Dover, New York; first puiblished by J. Wiley & Sons, 1965.
    • Barceló-Vidal, C. and Martı́n-Fernández, J.-A. (2016). The mathematics of compositional analysis. Austrian Journal of Statistics, 45,...
    • Barceló-Vidal, C., Martı́n-Fernández, J. A. and Pawlowsky-Glahn, V. (2001). Mathematical foundations of compositional data analysis....
    • Benjamin, J. R. and Cornell, C. A. (1960). Probability, Statistics and Decision for Civil Engineers. McGraw Hill Companies.
    • Billheimer, D., Guttorp, P. and Fagan, W. (2001). Statistical interpretation of species composition. Journal of the American Statistical Association,...
    • Birnbaum, A. (1962). On the foundations of statistical inference. Journal of the American Statistical Association, 57, 269–326.
    • Boogaart, K. G. v., Egozcue, J. J. and Pawlowsky-Glahn, V. (2010). Bayes linear spaces. SORT Statistics and Operations Research Transactions,...
    • Boogaart, K. G. v., Egozcue, J. J. and Pawlowsky-Glahn, V. (2014). Bayes Hilbert spaces. Australian and New Zealand Journal of Statistics,...
    • Egozcue, J. J., Dı́az-Barrero, J. L. and Pawlowsky-Glahn, V. (2006). Hilbert space of probability density functions based on Aitchison geometry....
    • Egozcue, J. J. and Pawlowsky-Glahn, V. (2005). Groups of parts and their balances in compositional data analysis. Mathematical Geology,37,...
    • Egozcue, J. J. and Pawlowsky-Glahn, V. (2011). Evidence information in bayesian updating. In J. J. Egozcue, R. Tolosana-Delgado, and M. I....
    • Egozcue, J. J. and Pawlowsky-Glahn, V. (2016). Changing the reference measure in the simplex and its weighting effects. Austrian Journal of...
    • Egozcue, J. J. and Pawlowsky-Glahn, V. (2018). Modelling compositional data. The sample space approach. Chapter 4 in Fifty years if IAMG,...
    • Egozcue, J. J. and Pawlowsky-Glahn, V. (2019). Compositional data: the sample space and its structure. TEST. submitted.
    • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. and Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional...
    • Egozcue, J. J., Pawlowsky-Glahn, V., Templ, M. and Hron, K. (2015). Independence in contingency tables using simplicial geometry. Communications...
    • Egozcue, J. J., Pawlowsky-Glahn, V., Tolosana-Delgado, R., Ortego, M. I. and van den Boogaart, K. G. (2013). Bayes spaces: use of improper...
    • Gray, R. M. (2011). Entropy and Information Theory (2nd ed.). Springer, New York.
    • Hartley, R. V. L. (1928). Transmission of information. Bell Systems Technical Journal, 7, 535–563.
    • Khinchin, A. I. (1957). Mathematical Foundations of Information Theory. Dover Publications, New York, NY (USA).
    • Kullback, S. (1997). Information Theory and Statistics, an unabridged republication of the Dover 1968 edition. Dover publications, Minetola.
    • Kullback, S. and Leibler, R. A. (1951a). On Information and Sufficiency. The Annals of Mathematical Statistics, 22, 79–86.
    • Kullback, S. and Leibler, R. A. (1951b). On information and sufficiency. Annals of Mathematical Statistics, 22, 79–86.
    • Lindley, D. V. (1956). On a measure of the information provided by an experiment. Annals of Mathematical Statistics, 27, 986–1005.
    • Martı́n-Fernández, J. A. (2001). Medidas de diferencia y clasificación no paramétrica de datos composicionales. Ph. D. thesis, Universitat...
    • McMillan, B. (1953). The basic theorems of information theory. Annals of Mathematical Statistics, 24, 196–219.
    • Menafoglio, A., Grasso, M., Secchi, P. and Colosimo, B. M. (2018). Profile monitoring of probability density functions via simplicial functional...
    • Menafoglio, A., Guadagnini, A. and Secchi, P. (2016). Stochastic simulation of soil particle-size curves in heterogeneous aquifer systems...
    • Pawlowsky-Glahn, V. and Buccianti, A. (Eds.) (2011). Compositional Data Analysis: Theory and Applications. John Wiley & Sons.
    • Pawlowsky-Glahn, V. and Egozcue, J. J. (2001). Geometric approach to statistical analysis on the simplex. Stochastic Environmental Research...
    • Pawlowsky-Glahn, V., Egozcue, J. J. and Tolosana-Delgado, R. (2015). Modeling and Analysis of Compositional Data. Statistics in practice....
    • Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, Princeton NJ, USA.
    • Shannon, C. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27, 379– 423, 623–656.
    • Shannon, C. E. and Weaver, W. (1949). The Mathematical Theory of Communication. University of Illinois Press. Urbana.
    • Yager, R. R. (1987). On the Dempster-Shafer framework and new combination rules. Information Sciences, 41, 93–137.
    • Yager, R. R. and Liu, L. (Eds.) (2008). Classic Works of the Dempster-Shafer Theory of Belief Functions. Springer, Berlin.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno