Ir al contenido

Documat


Bayes linear spaces

  • Autores: Karl Gerald Van Den Boogaart, Juan José Egozcue Rubí Árbol académico, Vera Pawlowsky Glahn Árbol académico
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 34, Nº. 2, 2010, págs. 201-222
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Linear spaces consisting of -finite probability measures and infinite measures (improper priors and likelihood functions) are defined. The commutative group operation, called perturbation, is the updating given by Bayes theorem; the inverse operation is the Radon-Nikodym derivative.

      Bayes spaces of measures are sets of classes of proportional measures. In this framework, basic notions of mathematical statistics get a simple algebraic interpretation. For example, exponential families appear as affine subspaces with their sufficient statistics as a basis. Bayesian statistics, in particular some well-known properties of conjugated priors and likelihood functions, are revisited and slightly extended.

  • Referencias bibliográficas
    • Aitchison, J. (1986).The Statistical Analysis of Compositional Data. Chapman & Hall, London (UK). (Reprinted in 2003 with additional material...
    • Aitchison, J., Barceĺo-Vidal, C., Egozcue, J. J. and Pawlowsky-Glahn, V. (2002).A concise guide for the algebraic-geometric structure of...
    • Ash, R. B. (1972).Real Analysis and Probability. Academic Press, New York, NY (USA). 476 pp.
    • Barceĺo-Vidal, C., Mart́ın-Ferńandez, J. A. and Pawlowsky-Glahn, V. (2001). Mathematical foundations of compositional data analysis....
    • Bauer, H. (1992).Maßund Integrationstheorie, 2̈uberarb. Auflage. de Gruyter, Berlin (DE). 260 pp.
    • Bauer, H. (2002).Wahrscheinlichkeitstheorie, 5 Auflage. de Gruyter, Berlin (DE). 520 pp.
    • Bayer, U., Burger, H. and Skala, W. (Eds.) (2002).Proceedings of IAMG’02 The 8th annual conference of the Int. Ass. for Math. Geol., Volume...
    • Berlinet, A. and Thomas-Agnan, C. (2004).Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Pub. 378 pp.
    • Billheimer, D., Guttorp, P. and Fagan, W. (2001). Statistical interpretation of species composition.Journal of the American Statistical Association,...
    • Birnbaum, A. (1962). On the foundations of statistical inference (with discussion).Journal of the American Statistical Association, 57, 269-326.
    • Eaton, M. L. (1983).Multivariate Statistics. A Vector Space Approach. John Wiley & Sons.
    • Egozcue, J. J., D́ıaz-Barrero, J. L. and Pawlowsky-Glahn, V. (2006). Hilbertspace of probability density functions based on Aitchison geometry.Acta...
    • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. and Barceĺo-Vidal, C. (2003). Isometric logratio transformations for compositional...
    • Hellinger, E. (1909). Neue begründung der theorie quadratischer formen von unendlichvielen ver̈anderlichen.Journal f̈ur die reine und...
    • Lambert, D. (1992). Zero-inflated Poisson regression, withan application to defects in manufacturing. Technometrics, 34, 1-14.
    • Leonard, T. and Hsu, J. S. J. (1999).Bayesian Methods: an analysis for statisticians and interdisciplinary researchers. Cambridge Series in...
    • Mart́ın-Ferńandez, J. A., Bren, M., Barceló-Vidal, C. and Pawlowsky-Glahn, V. (1999). A measure of difference for compositional data...
    • Mateu-Figueras, G., Pawlowsky-Glahn, V. and Barceló-Vidal, C. (2003). Distributions on the simplex. See Thió-Henestrosa and Martı́n-Ferńandez...
    • Mateu-Figueras, G., Pawlowsky-Glahn, V. and Martı́n-Ferńandez, J. A. (2002). Normal inℜ+ vs lognormal in ℜ. See Bayeret al. (2002),...
    • Matusita, K. (1955). Decision rules based on the distance for problems of fit, two samples and estimation. The Annals of Mathematical Statistics,...
    • Pawlowsky-Glahn, V. (2003). Statistical modelling on coordinates. See Thió-Henestrosa and Martı́n-Fernández (2003).
    • Pawlowsky-Glahn, V. and Egozcue, J. J. (2001). Geometric approach to statistical analysis on the simplex. Stochastic Environmental Research...
    • Pawlowsky-Glahn, V. and Egozcue, J. J. (2002). BLU estimators and compositional data.Mathematical Geology, 34(3), 259-274.
    • Robert, C. P. (2001).The Bayesian Choice. A Decision Theoretic Motivation. New York, NY (USA): Springer V. 436 pp.
    • Shao, J. (1999).Mathematical Statistics. Springer, New York (USA). 529 pp.
    • Small, C. G. and Leish, D. L. M. (1994).Hilbert Space Methods in Probability and Statistical Inference. New York, NY (USA): Wiley-Interscience....
    • Thió-Henestrosa, S. and Martı́n-Ferńandez, J. A. (Eds.) (2003).Compositional Data Analysis Workshop CoDaWork’03, Proceedings. Universitat...
    • Whaba, G. (1990).Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics. Soc. for Industrial &...
    • Witting, H. (1985).Mathematische Statistik I. Parametrische Verfahren bei festem Stichprobenumpfang. Stuttgart (DE): B. G. Teubner. 538 pp.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno