Ir al contenido

Documat


DER: Dynamic Evidential Reasoning applied to hyperspectral images classification

  • Autores: Cecilia Verónica Sanz, Ramiro Jordán
  • Localización: Journal of Computer Science and Technology, ISSN-e 1666-6038, Vol. 1, Nº. 6, 2002 (Ejemplar dedicado a: Sixth Issue; 9 p.)
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper describes a new classification method (DER) based on evidential reasoning to which a series of modifications are added [1]. DER allows including new evidence for the classification process and defines a different decision rule. The evidential reasoning algorithm provides a means to combine evidence from different data sources. It is a supervised classification technique that uses a training samples set. This novel method (DER) offers a learning stage to introduce new evidence in case the classifier requires so. Moreover, it uses the plausibility measure in order to define the decision rule as a way to incorporate data-associated uncertainty. The proposed method is applied in order to classify crops in hyperspectral images of the area of Nebraska (USA). Some results obtained are presented in order to assess DER precision.

  • Referencias bibliográficas
    • References [1] D. Peddle. “MERCURYÅ: An Evidential Reasoning Image Classifier”. Computers & Geosciences, vol. 21, No.10, pp. 1163-1176....
    • [2] Jensen. “Introductory Digital Image Processing. A remote sensing perspective”, 2da Edition, Prentice Hall. 1996
    • [3] A. F. H. Goetz , and V. Srivastava, "Mineralogical mapping in the Cuprite Mining District, Nevada", in Proceedings of the Airborne...
    • [4] T. M. Lillesand, R. W. Kiefer. "Remote Sensing and Image Interpretation", 3rd Edition, John Wiley. 1994.
    • [5] D. Peddle, and S. Franklin. “Multisource evidential classification of surface cover and frozen ground”. International Journal R. S., vol....
    • [6] D. Peddle, and S. Franklin. “Classification of Permafrost Active Layer Depth from Remotely Sensed and Topographic Evidence”, Remote Sensing...
    • [7] T. Lee, J. Richards, and P. Swain. “Probabilistic and Evidential Approaches for Multi-source Data Analysis”, IEEE Transactions on Geoscience...
    • [8] G. Wilkinson, and J. Megier. “Evidential Reasoning in a Pixel Classification Hierarchy – A Potential Method for Integrating Image Classifiers...
    • [9] H. Kim, and P. Swain. “A Method for Classification of Multisource Data Using Interval- Valued Probabilities and its Applications to Hiris...
    • [10] A. Srinivasan, and J. Richards. “Knowledge-based Techniques for Multi-source Classification”, International Journal of Remote Sensing,...
    • [11] D. Peddle. “Knowledge Formulation for Supervised Evidential Classification”. Photogrammetric Engineering & Remote Sensing, vol.61,...
    • [12] D. Peddle. “An Empirical comparison of evidential reasoning, linear discriminant analysis, and maximum likelihood algorithms for alpine...
    • [13] Anger C.D., Mah, S., Babey, S.K. "Technological enhancements to the compact airborne spectrographic imager (casi)." In Proceedings...
    • [14] Sanz C., “DER (Dynamic Evidential Reasoning), applied to the classification of hyperspectral images”. International Geoscience and Remote...
    • [15] Babey, S.K., Anger, C.D. "Compact airborne spectrographic imager (casi): A progress review." In Proceedings of the SPIE Conference....
    • [16] R. G. Congalton, K. Green. "Assessing the Accuracy of Remotely Sensed Data: Principles and Practices". Lewis Publishers. 1997.
    • [17] Jensen. “Introductory Digital Image Processing. A remote sensing perspective”. 2da edition. Prentice Hall. 1996.
    • [18] "Remote Sensing Digital Image Analysis: An Introduction". J. A. Richards, X. Jia. SpringerVerlag New York, Incorporated. 1999.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno