Ir al contenido

Documat


A method for analyzing turbulence models

  • Autores: Vladimir N. Grebenev, B. B. Ilyushin
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 8, Nº. 2, 2001, págs. 85-99
  • Idioma: inglés
  • DOI: 10.15517/rmta.v8i2.203
  • Enlaces
  • Resumen
    • español

      En este art´?culo introducimos un concepto basado en el m´etodo diferencial de restriccionespara examinar el procedimiento de clausura en Modelos de Turbulencia.Mostramos como este concepto puede ser aplicado para estudiar el problema de interacci´on y mexclado entre dos campos de flujo turbulento homog´eneo semi-infinito dediferentes escalas.Palabras clave:  Modelos de turbulencia, procedimiento de clausura, restricciones diferenciales,conjuntos invariantes, modelo de clausura de tercer orden, soluci´on autosimilar,comportamiento asint´otico.

    • English

      In this article we introduce a concept based on the differential constraints methodto examine the closure procedure in Turbulence Models. We show how this conceptmay be applied to study the problem of interaction and mixing between two semiinfinitehomogeneous turbulent flow fields of different scales.Keywords:  ResumenTurbulence models, closure procedure, differential constraints, invariant sets,third-order closure model, selfsimilar solution, asymptotic behavior.

  • Referencias bibliográficas
    • Yanenko, N. N. (1991) Selected Works. Nauka, Moscow (in Russian).
    • Sidorov, A. F.; Shapeev, V. P.; Yanenko, N. N. (1984) The Differential Constraints Method and its Application to Gas Dynamics. Nauka, Novosibirsk...
    • Ilyushin, B. B. (2000) “Higher-moment diffusion in stable stratification”, in: B.E. Launder & N.D. Sandham (Eds.) Closure Strategies for...
    • Ilyushin, B. B. (1999) “Model of fourth–order cumulants for prediction of turbulent transport by large–scale vortex structure”, J. Appl. Mechan....
    • Lamb, R. G. (1982) “Diffusion in convective boundary layer”, in: F.T.M. Nieuwstadt & H. van Dop (Eds.) Atmospheric Turbulence and Air...
    • Hazen, A. M. (1963) “To nonlinear theory of appearance of turbulence”, Dokl. Acad. Nauk USSR 163: 1282–1287 (in Russian).
    • Ogura, Y. (1962) “Energy transfer in a normally distributed and isotropic turbulent velocity field in two dimensions”, Phys. Fluids 5(4):...
    • Hanjalic, K.; Launder, B. E. (1972) “A Reynolds stress model of turbulence and its application to thin shear flows”, J. Fluid Mech. 52: 609–638.
    • Ibragimov, N. H. (1985) Transformation Groups Applied to Mathematical Physics. Reidel.
    • Kaptsov, O. V. (1995) “B-determining equations: applications to nonlinear partial differential equations”, Euro. J. Appl. Math., 6: 265–286.
    • Hulshof ,J. (1997) “Selfsimilar solutions of Barenblatt’s model for turbulence”, SIAM J. Math. Anal. Appl. 28(1): 33–48.
    • Barenblatt, G. I. (1996) Scaling, Selfsimilar and Intermediate Asymptotics. Cambridge Texts in Applied Mathematics, 14.
    • Polubarinova-Kochina, P. Ya. (1948) “On a nonlinear partial differential equation appearing in the filtration theory”, Dokl. Acad. Nauk USSR,...
    • Ilyushin, B. B.; Kurbatskii, A.F. (1990) “Numerical simulation of the shearless turbulence mixing layer”, Izv. Acad. Nauk USSR (Siberian Branch),...
    • Veeravalli, S.; Warhaft, Z. (1989) “The shearless turbulence mixing layer”, J. Fluid Mech. 207: 191–229.
    • Grebenev, V. N. (1994) “On a certain system of degenerate parabolic equations which arises in Hydrodynamics”, Sib. Math. J. 35(4): 753–767.
    • Ladyzhenskaya, O. A.; Solonnikov, V.; Ural’ceva N. (1968) Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc.
    • Vishnevskiy, M. P.; Zelenyak, T. I.; Lavrentjev, M. M. (1995) “Large time behavior solutions for nonlinear parabolic equations”, Sib. Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno