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Abstract

In this article we introduce a concept based on the differential constraints method
to examine the closure procedure in Turbulence Models. We show how this concept
may be applied to study the problem of interaction and mixing between two semi-
infinite homogeneous turbulent flow fields of different scales.

Keywords: Turbulence models, closure procedure, differential constraints, invariant sets,
third-order closure model, selfsimilar solution, asymptotic behavior.

Resumen

En este art́ıculo introducimos un concepto basado en el método diferencial de res-
tricciones para examinar el procedimiento de clausura en Modelos de Turbulencia.
Mostramos como este concepto puede ser aplicado para estudiar el problema de inter-
acción y mexclado entre dos campos de flujo turbulento homogéneo semi-infinito de
diferentes escalas.

Palabras clave: Modelos de turbulencia, procedimiento de clausura, restricciones difer-
enciales, conjuntos invariantes, modelo de clausura de tercer orden, solución autosimilar,
comportamiento asintótico.

1 Introduction

The method of differential constraints advanced by Yanenko [1], [2] for constructing explicit
solutions to different kinds of nonlinear partial differential equations makes it possible to
obtain the gradient–type algebraic expressions for unknown functions. This provides us
a concept for examining the closure procedure for momentum equations in Turbulence
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Models. Moreover, the method gives a reasonable tool for obtaining algebraic expressions.
The exposition is demonstrated using example chosen from Free Turbulence Flows Theory.
The analysis carried out in the article shows that a concept of differential constraints
allows us to interpret algebraic expressions as the equations of invariant sets (manifolds)
generated by corresponding differential equations.

Before proceeding to the mathematical contribution and for the sake of completeness
we briefly inform the interested reader on the closure problem of Turbulence Models.
The statistical moments method of turbulent flows structure description is based on the
presentation of the sought quantities as a sum of mean values and turbulent fluctuations.
Using the time-dependent Navier–Stokes equation and the procedure of averaging, we
can derive transport equations for moments of arbitrary order. Since Fluid Mechanics
Equations are nonlinear, any equation from the obtained ones, includes new unknown
functions and corresponding transport equations can be derived for these unknowns too.
However, the chain of the equations will remain unclosed because the introduction of new
equations results in a quicker increase in the number of unknown functions than that of
the number of equations. Thus, the exact turbulence model contains the infinite number
of transport equations and generates the so-called closure problem. A general approach
of closure strategy can be formulated as follows: cumulants of the order 1, . . . , n are
calculated from differential transport equations, the (n + 1)-order cumulants describing
the processes of turbulent diffusion in the n-order cumulants equations are calculated
from the algebraic expressions derived from the corresponding transport equations and
the (n+ 2)-order cumulants are considered to be zero, for details see [3]. Different closing
approximations give different models. This general approach has been employed in [4]
to obtain a closed model of turbulent transport that does not imply equality to zero of
the fourth-order cumulants. The closure procedure was performed at the level of the fifth
moments, i.e. the fifth-order cumulants were assumed to be equal to zero.

The plan of the article is as follows. In Section 2, we present a new third-order model
of turbulence based on the above-mentioned approach to the classical problem about the
dynamics of the shearless turbulence mixing layer. There are a considerable number of ref-
erences connected with the use of third-order turbulence models. However, as a rule these
models employ Millionshchikov’s quasinormality hypothesis for the parametrization of dif-
fusion processes in equations for triple correlations, that is according to this hypothesis,
all cumulants of fourth and higher order can be negligible in comparison with the corre-
sponding correlation functions. As a consequence, in the former case the triple-correlation
equations are of the first-order without a dumping mechanism for triple correlations that
leads (in some cases) to physically contradictory results [5] (e. g. the appearance of neg-
ative portions of the spectrum of the turbulent kinetic energy, [6], [7]). The approach
proposed in [3], [4] allows us to overcome this obstacle; the technique also includes a phys-
ically reasonable way for constructing approximate algebraic parametrizations of higher
moments.

Our next result is devoted to examining an algebraic expression for the triple correla-
tion 〈w3〉 which is generally used in second-order closure models by means of applying a
concept of differential constraints to our third-order closure model. In Section 3 we show
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that the set of smooth functions:

D = {〈w2〉, 〈w3〉, τ̂ : H1(〈w2〉, 〈w3〉, τ̂) ≡ 〈w3〉 + δτ̂ 〈w2〉〈w2〉z = 0}

is invariant under the flow generated by the differential equation for the triple correlation of
the vertical velocity fluctuations. As a consequence, it is established that the differential
constraint H1 coincides with the algebraic expression for 〈w3〉 or the so-called tensor-
invariant model[8].

In Section 4 we discuss the existence of selfsimilar solutions. It is wellknown [10] that
if an operator admits invariant sets, then there exists a solution to an overdetermined
system under suitable assumptions on operators and the form of invariant sets. We find a
class of positive solutions having the selfsimilar description.

Finally, we investigate the convergence of solutions for a second-order closure model
to the obtained selfsimilar solution.

2 Modelling the turbulent transport in a shearless mixing

layer

The subject of the study is the problem of interaction and mixing between two semi-
infinite homogeneous turbulent flow fields of different scales. As the flow evolves these two
different turbulent fields penetrate and diffuse into one another. To describe correctly the
physical model, it is proposed to consider the hypothesis of equality to zero of the fifth-
order cumulants under the condition of nonzero fourth-order cumulants. The starting
point is the following system of average equations:

∂eh
∂t

= −∂〈ehw〉
∂z

− c1
τ

[
eh − 2

3
E

]
− 2

3
ε,

∂ε

∂t
=

∂

∂z

[
cdτ〈w2〉 ∂ε

∂z

]
+
cε1
τ
βg〈wθ〉 − cε2

ε

τ
,

∂〈w2〉
∂t

= −∂〈w
3〉

∂z
+ 2βg〈wθ〉 − c1

τ

[
〈w2〉 − 2

3
E

]
− 2

3
ε.

In the absence of mean shear velocity the horizontal component eh of the turbulent kinetic
energy takes the following form:

eh = (〈u2〉 + 〈v2〉)/2.

As usual, the sign 〈·〉 denotes average values, 〈u2〉, 〈v2〉, 〈w2〉 are the one-point velocity
correlation of the second-order, τ = E/ε is the time scale of turbulence. Here E, ε are
the kinetic energy and spectral flux of the turbulent kinetic energy respectively. The
volumetric expansion coefficient is β = 1/Θ, where Θ and θ are the mean and variance
potential temperature respectively. The constants involved in the model with the lower
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case letters are denoted by c∗∗. We complete the system by the transport equation for the
triple correlation of the vertical velocity fluctuation:

∂〈w3〉
∂t

= −∂C
∂z

− 3〈w2〉∂〈w
2〉

∂z
+ 3βg〈w2θ〉 − c2

〈w3〉
τ

,

Algebraic parametrizations for the fourth-order cumulant C, the triple correlation 〈w2θ〉
and the vertical heat flux 〈wθ〉 can be written as [4]:

C = − τ

c3

[
6〈w3〉∂〈w

2〉
∂z

+ 4〈w2〉∂〈w
3〉

∂z

]
,

〈w2θ〉 = − τ

c4

[
〈w3〉∂Θ

∂z
− 2βg〈wθ2〉

]
, 〈wθ2〉 = − τ

c5
〈w2〉∂〈θ

2〉
∂z

,

〈wθ〉 = − τ

cθ1

〈w2〉∂Θ
∂z

≡ − τN2

βgcθ1

〈w2〉, N2 = βg
∂Θ
∂z

〈θ2〉 = − τ

cr
〈wθ〉∂Θ

∂z
= −τN

2

βgr
〈wθ〉 =

(
τN2

βg

)2 〈w2〉
cθ1r

,

where r = τ/τθ, τθ is the time scale of potential temperature variance, N is the Brunt-
Vaisala frequency. On using the balance approximation between exchange mechanism and
dissipation, the equation for the horizontal component eh of the turbulent kinetic energy
is simplified and has the following form:

−c1
[
eh − 2

3

(
eh +

〈w2〉
2

)]
=

2
3

(
eh +

〈w2〉
2

)
.

Hence,

eh =
c1 − 1
c1 + 2

〈w2〉, E =
31

2(c1 + 2)
〈w2〉, τ =

3c1
2(c1 + 2)

〈w2〉
ε
.

By the obtained relations, in the case of absence stratification i.e. N ≡ 0 the equation can
be rewritten as:

∂〈w2〉
∂t

= −∂〈w
3〉

∂z
− c1
c1 + 2

〈w2〉
τ

,

∂ε

∂t
=

∂

∂z

[
cdτ〈w2〉 ∂ε

∂z

]
− cε2

ε

τ
,

∂〈w3〉
∂t

=
∂

∂z

[
τ

c3

(
6〈w3〉∂〈w

2〉
∂z

+ 4〈w2〉〈∂w
3〉

∂z

)]
− 3〈w2〉∂〈w

2〉
∂z

− c2
〈w3〉
τ

.

It follows from the formula for C [4] that the contribution of the second term in the
algebraic model for the cumulant C is essential. Thus the governing equations are:

∂〈w2〉
∂t

= −∂〈w
3〉

∂z
− α

〈w2〉
τ̂

, (2.1)
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∂〈w3〉
∂t

=
∂

∂z

[
κτ̂ 〈w2〉∂〈w

3〉
∂z

]
− 3〈w2〉∂〈w

2〉
∂z

− γ
〈w3〉
τ̂

, (2.2)

∂ε

∂t
=

∂

∂z

[
δτ̂ 〈w2〉 ∂ε

∂z

]
− %

ε

τ̂
, (2.3)

where α = 2/3, κ = 6c1/c3(c1 + 2), γ = 2c2(c1 + 1)/3c1, δ = 3c1cd/2(c1 + 2), % =
2cε2(c1 + 2)/3c1, τ̂ = 〈w2〉/ε.

3 Invariant sets

We briefly recall the special terminology of Symmetry Analysis. For the detailed descrip-
tion of extra materials see, for example [9], [10].

Consider the system of evolution equations F :

ui
t = F i(t, x1, . . . , xn, u

1, . . . , uk
λ, . . . , )

where i = 1, . . . ,m, uk
λ = ∂λuk/∂xλ1

1 . . . ∂xλn
n .

A set(manifold) H given by equations:

hi(t, x1, . . . , xn, . . . , u
1, . . . , um, . . . , uk

λ, . . .) = 0

is said to be the invariant set (manifold) of the system F if

VF (hi)
∣∣
[H]0 = 0,

VF =
∂

∂t
+

m∑

i=1

F i ∂

∂u1
+

m∑

i=1

Dα(F i)
∂

∂ui
α

,

where α = (α1, . . . , αn), Dα = Dα1
x1
. . . Dαn

xn
. Here [H]0 denotes the equations H and its

differential prolongations with respect to x1, . . . , xn.
The invariant condition can be written in the following equivalent form:

Dt(hi)
∣∣
[F ]0

∣∣
[H]0 = 0.

In an application of invariant relations between the system F and set (manifold) H we
demonstrate the following useful

Theorem 3.1 ([10]) Assume that the system F has an invariant set(manifold) of the
form H which is solved with respect to higher derivatives and the initial conditions are
given by ui

ni
(x0, t0) = ciki

, ciki
∈ R, then in some neighborhood of (x0, t0) ∈ R2 there

exists a unique smooth solution of F .

As the first result that uses the above notion we prove that the set

D = {〈w2〉, 〈w3〉, τ̂ : H1(〈w2〉, 〈w3〉, τ̂) ≡ 〈w3〉 + δτ̂ 〈w2〉〈w2〉z = 0} (3.1)

is invariant under the flow generated by equation (2.2).
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Theorem 3.2 Let the triple 〈w2〉, 〈w3〉, ε be a sufficiently smooth solution of (2.1)-(2.3).
Assume also that:

∂τ̂

∂z
= 0,

∂τ̂

∂t
= 2α− γ +

3
δ
, κ = δ. (3.2)

Then:

(i) the equation (2.2) admits the invariant set D;

(ii) the system (2.1)-(2.3) on the invariant set D is equivalent to:

〈w2〉 = 2αε− γε+
3ε
δ
, (3.3)

〈w3〉 = −δτ̂〈w2〉∂〈w
2〉

∂z
, (3.4)

∂ε

∂t
=

∂

∂z

[
δτ̂2ε

∂ε

∂z

]
− %

ε

τ̂
. (3.5)

Proof. (i) Calculating the time derivative DtH we obtain:

DtH1 =
∂〈w3〉
∂t

+ δ
∂τ̂

∂t

∂〈w2〉
∂z

〈w2〉 + δτ̂
∂〈w2〉
∂t

∂〈w2〉
∂z

+ δτ̂〈w2〉∂
2〈w2〉
∂t∂z

. (3.6)

Using the equation (2.2) we can rewrite (3.6) as

DtH1 =
∂

∂z

[
κτ̂〈w2〉∂〈w

3〉
∂z

]
− 3〈w2〉∂〈w

2〉
∂z

− γ
〈w3〉
τ̂

+ (3.7)

+δ
∂τ̂

∂t

∂〈w2〉
∂z

〈w2〉 + δτ̂
∂〈w2〉
∂t

∂〈w2〉
∂z

+ δτ̂ 〈w2〉∂
2〈w2〉
∂t∂z

.

Replacing the derivative ∂〈w3〉/∂z into the diffusion operator in (2.2) by its representation

∂〈w3〉
∂z

= −∂〈w
2〉

∂t
− α

〈w2〉
τ̂

from equation (2.1) we obtain

DtH1 = −κ∂τ̂
∂z

∂〈w2〉
∂t

〈w2〉 − (κ− δ)τ̂
∂〈w2〉
∂t

∂〈w2〉
∂z

−

−(κ− δ)τ̂ 〈w2〉∂
2〈w2〉
∂z∂t

− (2ακ − ∂τ̂

∂t
δ − γδ + 3)〈w2〉∂〈w

2〉
∂z

.

It follows from the hypothesis (3.2) that DtH1
∣∣
[F ]0

∣∣
[H]0 = 0.

(ii) Indeed, the proof of this assertion is the consequence of (i). We only note that (2.2)
is fulfilled for the functions which belong to the set D, and substituting

εa =
〈w2

a〉
(%− α)(t+ t0)

into (2.3) yields equation (2.1). This completes the proof of theorem.
Theorem3.2 is of special interest in view of its application to Turbulent Models.
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Corollary 3.1 The equation H1(〈w2〉, 〈w3〉, τ̂ ) = 0 that defines an invariant set of (2.1)–
(2.3) coincides with the algebraic triple correlation model or the tensor-invariant model
[8].

In other words, the algebraic expression represents the equation of an invariant set (man-
ifold) generated by the differential equation for the triple correlation.

Corollary 3.2 There exists no differential constraints of the form

Hn ≡ 〈w3〉 −Hn(〈w2〉, 〈w3〉, 〈w3〉1, . . . 〈w3〉n, τ̂ ) = 0

for n > 1 where 〈w3〉n denotes the n-order derivative, Hn is a sufficiently smooth function.

Proof. This follows by substituting 〈w3〉 = H(n)(〈w2〉, 〈w3〉, 〈w3〉1, . . . 〈w3〉n, τ̂) into equa-
tions (2.1), (2.2) and comparing the orders of higher derivatives. This yields 2n+1 = n+2
that is n = 1.

4 Selfsimilar solutions

Theorem3.2 enables us to reduce (2.1)-(2.3) to the algebraic differential expressions (3.3)-
(3.5) which can be easier analyzed. Using the obtained reduction we give the selfsimilar
description for (2.1)-(2.3). It should be recalled that the solution of the equation (or the
system of equations) is said to be selfsimilar for the equation if this solution is invariant
under the parametric group of scale transformation.

Appropriate selfsimilar solution to our problem is a solution of the following form:

εa =
h(ξ)

t+ t0)3µ+ν
, 〈w2

a〉 =
f(ξ)

(t+ t0)2µ
, 〈w3

a〉 =
q(ξ)

(t+ t0)3µ
, (4.1)

ξ =
z − z0
L

, L = λ(t+ t0)ν , z0 = λ0L+ λ1, t0 > 0,

where λ, λi are model constants and t0 is a parameter. A straightforward calculation
yields that if we choose ν = 1 − µ, then the original system is transformed to the system
of ordinary differential equations for the profiles f , q and h:

2µf + (1 − µ)(ξ + λ0)fξ − gξ − αh = 0, (4.2)

κ

(
f2

h
qξ

)

ξ

− 3ffξ − (ξ + λ0)qξ − γ
qh

f
+ 3µq = 0, (4.3)

δ

(
f2

h
hξ

)

ξ

− (ξ + λ0)hξ + (2µ+ 1)h − %
h2

f
= 0. (4.4)

The free similarity exponent µ has to be determined from a solution of the obtained non-
linear eigenvalue problem. This is a typical situation appearing in nonlinear diffusion
problems where a conservation law does not exist. The boundary conditions are deter-
mined by the physical model: the functions f(ξ), q(ξ), h(ξ) tend to the positive limits as



92 v.n. grebenev – b.b. ilyushin

ξ tends to ±∞. The analysis of behavior of the integral curves to the eigenvalue prob-
lem encounters certain obstacles. In the case of a simpler K − ε model this analysis was
partially formed in [11].

To solve the problem we use the existence of the invariant set obtained in Theorem3.2.
Let us check the conditions of the theorem. For this purpose, we consider the equation
for τ̂ . On calculating the time derivative τ̂t we obtain:

∂τ̂

∂t
=

1
ε

∂〈w2〉
∂t

− 〈w2〉
ε2

∂ε

∂t
=

−1
ε

∂〈w3〉
∂z

− α− δτ̂2 ∂
2〈w2〉
∂z2

+ δ〈w2〉τ̂ ∂
2τ̂

∂z2
− δ

τ̂2

〈w2〉

(
∂〈w2〉
∂z

)2

+ %.

Thus the equation for τ̂ has the form:

∂τ̂

∂t
= δ〈w2〉τ̂ ∂

2τ̂

∂z2
− τ̂

〈w2〉

[
∂〈w3〉
∂z

+ δτ̂ 〈w2〉∂
2〈w2〉
∂z2

+ δτ̂

(
∂〈w2〉
∂z

)2
]
− α+ %. (4.5)

Obviously, it is sufficient to check the conditions of the theorem only for the functions
(〈w2〉, 〈w3〉, τ̂) ∈ D. It is clear that τ̂ = (%− α)(t+ t0) is a solution of (4.5). Setting

%− α = (2αδ − γδ + 3)/δ, (4.6)

and applying Theorem3.2 we obtain that system (4.2)–(4.4)) admits a reduction. As a
result, we have the following boundary value problem for h(ξ):

δ(w2
chhξ)ξ + (1 − µ)(ξ + λ0)hξ = 0, wc = %− α, µ =

α

2(%− α)
, (4.7)

h(−∞) = a−t
2µ+1
0 , h(+∞) = a+t

2µ+1
0 , (4.8)

where a± = limz→±∞ ε(z, 0), a± > 0. Taking into account (4.6) the following relations
between the model constants hold:

δ =
3

%− γ
, γ =

3
2
α, %− γ > 0. (4.9)

We prove the existence and uniqueness theorem for the problem (4.7), (4.8), present in
detailed the qualitative properties of the solution. Note that this solution is essentially
different from the well-known Barenblatt’s solutions [12]; first, a class of positive solution
to the porous medium equation was introduced into consideration in [13].

It will be convenient to deal with the function U(ξ̄) = h2(ξ̄ − λ0), where ξ̄ = ξ + λ0.
Then (4.7), (4.8) is rewritten as

δ(ρ− α)2Uξ̄ξ̄ + (1 − µ)ξ̄U−1/2Uξ̄ = 0, (4.10)

U(−∞) = (a−t
2µ+1
0 )2, U(+∞) = (a+t

2µ+1
0 )2. (4.11)
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To find a solution to (4.10), (4.11) we consider a family of the Cauchy problem to the
equation (4.10) on (0,+∞) with the initial data:

U(0) = η, Uξ̄(0) = ϕ, (4.12)

where η, ϕ are positive numbers. By ODE Theory, there exists a unique local solution Û
for every η, ϕ.

Lemma 4.1 The solution Û of the Cauchy problem (4.10), (4.12) is increasing and con-
cave positive function on an interval where the function Û exists.

Proof. Positiveness of the derivative Ûξ̄ is deduced from the following general property
that holds for P = εξ̄: the order of zero of the function P in the domain {ε > 0} for t > 0
counted with multiplicity is finite with the exception of the case ε ≡ const.

Let us suppose that Ûξ̄ vanishes at a point ξ̄0. By differentiating of equation (4.10)
we can conclude that all derivative of Û vanishes at the same point ξ̄0. This implies that
P has a zero of infinite order which contradicts the above presented property. Thus Ûξ̄

cannot be zero for ξ̄ > 0.

Corollary 4.1 The solution Û of (4.10), (4.12) exists for all ξ̄ ≥ 0.

Proof. This directly follows from the inequalities Ûξ̄ > 0, Ûξ̄ξ̄ < 0.

Lemma 4.2 Ûξ̄ → 0 as ξ̄ → ∞.

Proof. From equation (4.10) we find

Ûξ̄ = ϕ exp(− (1 − µ)
δ(ρ− α)2

ξ̄∫

0

sÛ−1/2 ds).

To estimate Ûξ̄ we use the inequality Û ≤ η+ϕξ̄ (see, Corollary4.1). It is not hard to see
that

Ûξ̄ ≈ ϕ exp
(
− 2(1 − µ)

3δ(ρ − α)2
ϕ−1/2ξ̄3/2

)

for sufficiently large values of ξ̄.

Corollary 4.2 The function Û has a horizontal asymptote. Moreover, the following esti-
mates hold

ϕ5/4

√
3δ(ρ− α)

2
√

2
√

1 − µ

√
π + η ≤ lim

ξ̄→∞
Û(ξ̄) ≤ ϕ3/2 3δ(ρ − α)2

2(1 − µ)
e+ η.

The proof of the left-hand side of inequality follows from
∞∫

−∞
exp(−ξ̄2) dξ̄ =

√
π.

Remark 4.1 Setting ϕ = 0 in (4.12), we have Û ≡ η for all ξ̄ ≥ 0.
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Along with (4.10), (4.12), we consider the problem with the initial data

Ũ(0) = η, Ũ(0)ξ̄ = −ϕ. (4.13)

A similar analysis as in Lemma 4.1 enables us to establish

Lemma 4.3 The solution Ũ of (4.10), (4.13) is a decreasing convex function on an in-
terval where Ũ > 0.

The next Lemma guarantees positiveness of Ũ and therefore, solvability of (4.10), (4.13)
in a class of positive functions defined on [0,∞).

Lemma 4.4 If
fa(0) ≤ Ũ(0), |Ũξ̄ | < |fa(0)ξ̄ |, (4.14)

then Ũ > 0 on [0,∞).

Here the function fa(ξ̄) denotes Barenblatt’s selfsimilar solution [12] Proof of Lemma 4.4
is based on analysis of behavior of the integral curves to (4.10). Applying the comparison
theorem to the functions Ũ and fa (taking into account (4.14)) we obtain that Ũ belongs
to a class of integral curves that do not intersect ξ̄-axis and have horizontal asymptotes
depending continuously on the values of derivative Ũξ̄ at zero. Moreover, ξ̄-axis is not
asymptote for the integral curves.

Combining functions Û and Ũ we find the solution of the equation (4.10) on (−∞,+∞).
Indeed, this equation is invariant under the transformation ξ̄ → −ξ̄. Therefore, the func-
tion U(ξ̄) equals Û(ξ̄+) for ξ̄ ≥ 0 and Ũ(−ξ̄+) for ξ̄ < 0 is a solution of (4.10) on (−∞,∞)
(where ξ̄+ = {ξ̄ ≥ 0}). It then follows from the properties of Ū and Ũ that for U holds

Lemma 4.5 The function U is increasing over (−∞,+∞) and has finite limits as ξ̄ →
±∞. Moreover, U has convex and concave profiles for ξ̄ < 0 and ξ̄ > 0, respectively. The
derivative Uξ̄ satisfies 0 < Uξ̄ ≤ Uξ̄(0) < |faξ̄(0)|.

Using the previous Lemmas we arrive at the following

Theorem 4.1 For any positive finite numbers a− and a+ (a− ≤ a+) there exists a pa-
rameter t0 such that the boundary value problem (4.10), (4.12) (respectively (4.7), (4.8))
has a unique positive solution.

Remark 4.2 The test configurations of profiles of the spectral flux ε obtained by numerical
and experimental methods (see, for example [14], [15]) coincides qualitatively with profiles
of εa.

Once we have determined h(ξ), we can find εa by the formula εa(z, t) = h(ξ)/(t+ t0)2µ+1,
〈w2

a〉 is defined from the relation 〈w2
a〉 = τ̂ εa = (ρ−α)(t+ t0)εa. For the triple correlation

〈w3
a〉 the following holds

〈w3
a〉 = −δ(ρ− α)(t+ t0)〈w2

a〉
∂〈w2

a〉
∂ξ

. (4.15)

Thus we have proved
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Theorem 4.2 Let κ = δ, δ = 3/(ρ − γ) and γ = (3/2)α, assume that ρ − γ > 0. Then
there exists a solution 〈w2

a〉, 〈w3
a〉, εa of system (2.1)–(2.3) which represents the selfsimilar

description of the shearless turbulence mixing layer.

5 Convergence to the selfsimilar solution

In this section we compare asymptotic behavior of a solution to a turbulent diffusion
model of gradient type (”standard” second-order model of turbulence) with the selfsimilar
solution 〈w2

a〉, 〈w3
a〉, εa obtained in Section 4.

This model consists of a system of two reaction-diffusion partial differential equations,
namely:

∂〈w2〉
∂t

=
∂

∂z

[
δτ̂ 〈w2〉∂〈w

2〉
∂z

]
− α

〈w2〉
τ̂

, (5.1)

∂ε

∂t
=

∂

∂z

[
δτ̂ 〈w2〉 ∂ε

∂z

]
− %

ε

τ̂
, (5.2)

with initial data
〈w2(z, 0)〉 = 〈w2

0(z)〉, ε(z, 0) = ε0(z), (5.3)

where 〈w2
0(z)〉, ε(z, 0) = ε0(z) are given bounded, positive and continuous function on

R with finite limt→±∞〈w2
0(z)〉 = b±, limt→±∞ ε0(z) = a±. Here a±, b± are positive

numbers. We show that the large time behavior of the solution for (5.1)-(5.3) can be well
approximated by (〈w2

a〉, εa).
First, we prove the existence result to the Cauchy problem for the model using an

approach suggested in [16]. To achieve the existence of a solution to (5.1)-(5.3), we begin
with constructing approximate solutions 〈w2

k〉, εk for k = 1, . . . , as a solution to the system:

∂〈w2
k〉

∂t
=

∂

∂z

[
δψ(τ̂k(z, t− k−1))〈w2

k(z, t− k−1)〉
∂〈w2

k〉
∂z

]
− α

〈w2
k〉

ψ(τ̂k(z, t− k−1))
, (5.4)

∂εk
∂t

=
∂

∂z

[
δψ(τ̂k(z, t− k−1)〈w2

k(z, t− k−1))〉∂εk
∂z

]
− %

εk
ψ(τ̂k(z, t− k−1))

(5.5)

in Qk = [−k, k] × [0, k] under the conditions:

∂〈w2
k(±k, t)〉
∂t

= 0,
∂ε(±k, t)

∂t
= 0, (5.6)

〈w2
k(z, 0)〉 = 〈w2

0k(z)〉, εk(z, 0) = ε0k(z), (5.7)

where

〈w2
0k〉, ε0k ∈ C∞([−k, k]),

∂〈w2
0k(±k)〉
∂z

= 0,
∂ε0k(±k)

∂z
= 0,

and the sequences positive bounded functions 〈w2
0k〉, ε0k convergence to 〈w2

0〉, ε0 in Cloc(R)
as k tends to infinity. The function ψ(s), s ∈ R+ is defined as follows:

ψ ∈ C∞(R+), ψ(s) = s for s ∈ [d,∞), where d = min
z∈R

τ̂(z, 0),
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ψ(s) = d/2 for s ∈ [0, d/2], ψ′(s) > 0, for s ∈ (d/2, d],

and
〈w2

k(z, t)〉 = 〈w2
0k(z)〉, εk(z, t) = ε0k(z), for − k−1 ≤ t ≤ 0.

For each fixed k = 1, 2, . . ., a solution to problem (5.4)-(5.7) in Qk is constructed succes-
sively in the layers

Qj
k = [−k, k] × [(j − 1)k−1, jk−1], j = 1, . . . , k2,

of the cylinder Qj
k. The existence of a unique solution of class C2+α,1+α/2 in each layer

ensues from [17]. According to the maximum principle, the functions 〈w2
k〉, εk are upper

bounded uniformly in k. The a priori lower bounds for 〈w2
k〉, εk in Qk follows from

comparison with a spatially homogeneous solution to problem (5.4)-(5.7), and we have:

min
z∈[−k,k]

〈w2
0k(z)〉

[
minz∈[−k,k] τ̂(z, 0)

minz∈[−k,k] τ̂(z, 0) + (%− α)k

]α

≤ 〈w2
k(z, t)〉,

min
z∈[−k,k]

ε0k

[
minz∈[−k,k] τ̂(z, 0)

minz∈[−k,k] τ̂(z, 0) + (%− α)k

]%

≤ ε(z, t).

The norms of 〈w2
k〉, εk in the space C2+α,1+α(Qk) are bounded uniformly in k too, this

fact follows from Schauder’s estimates for linear parabolic equations. Indeed, considering
equation (5.4) as a linear parabolic equation in 〈w2

k〉 and turning to Schauder’s estimates
we find out

‖〈w2
k〉‖C2+α,1+α ≤ cw,

where cw is a constant independent of k. Similarly we can estimate the function εk in the
norm of space C2+α,1+α/2.

Thus, the sets {〈w2
k〉} and {εk} are compact in the space C2,1. Consequently, we can

construct sequences {〈w2
ki
〉} and {εki

} that converge to the functions 〈w2〉, ε in the norm
of the space C2,1(Q) for each compact subset Q ⊂ R2

+. After passage to the limit in the
system (5.4), (5.5) and initial-boundary conditions (5.6), (5.7) as ki → ∞, we infer that
〈w2〉, ε is a classical solution to the Cauchy problem:

∂〈w2〉
∂t

=
∂

∂z

[
δψ(τ̂ (z, t))〈w2(z, t)〉∂〈w

2〉
∂z

]
− α

〈w2〉
ψ(τ̂ (z, t))

, (5.8)

∂ε

∂t
=

∂

∂z

[
δψ(τ̂ (z, t)〈w2(z, t))〉 ∂ε

∂z

]
− %

ε

ψ(τ̂ (z, t))
, (5.9)

〈w2(z, 0)〉 = 〈w2
0(z)〉, ε(z, 0) = ε0(z). (5.10)

The function ψ(s) in the system of equations (5.8), (5.9) equals s by construction, since
d ≤ τ̂ . To prove the preceding inequality, it suffices to apply the maximum principle to
the function τ̂ which satisfies the equation

∂τ̂

∂t
= δ〈w2〉τ̂ ∂

2τ̂

∂z2
− α+ %.

Thus we have proved the following solvability theorem for problem (5.1)-(5.3):
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Theorem 5.1 Assume that 〈w2
0(z)〉, ε0(z) are continuous positive functions defined on the

real axis R and such that limt→±∞〈w2
0(z)〉 = b±, limt→±∞ ε0(z) = a± with finite positive

numbers a±, b±. Then there exist a unique classical positive solution to (5.1)-(5.3).

To study the convergence of the solutions to our second-order model of turbulence to the
selfsimilar solution of the third-order model we introduce into consideration the rescale
variables connected by the selfsimilar description of the problem:

$(ξ, θ) = (t+ t0)2µ〈w2(z, t)〉, χ(ξ, θ) = (t+ t0)3µ〈w3(z, t)〉,

u(ξ, θ) = (t+ t0)2µ+1ε(z, t), w(ξ, θ) = (t+ t0)−1τ̃(z, t),

where θ = ln(t+ t0) is the rescaled time variable and µ = α/2(%−α). The functions u, $
satisfy the system:

∂$

∂θ
=

∂

∂ξ

(
δw$

∂$

∂ξ

)
+ (1 − µ)(ξ + λ0)

∂$

∂ξ
, (5.11)

∂u

∂θ
= δ

∂

∂ξ

(
w2u

∂u

∂ξ

)
+ (1 − µ)(ξ + λ0)

∂u

∂ξ
, (5.12)

Then w is a solution of

∂w

∂θ
= δ$w

∂2w

∂ξ2
+ (1 − µ)(ξ + λ0)

∂w

∂ξ
− w − α+ %, (5.13)

and as it can be easily seen, equations (5.11)-(5.13) have a unique equilibrium state h, f ,
wc. Here the function h(ξ) is the unique solution of (4.7)-(4.8) and wc = limθ→∞w(·, θ),
wc = %−α. Therefore, any results on time asymptotic of the functions u, $, w translates
into a result on convergence to the selfsimilar solution 〈w2

a〉, 〈w3
a〉, εa.

To study the convergence of $(ξ, θ), u(ξ, θ) to a positive steady-state solution as
θ → ∞, we consider the so-called limit system:

∂$c

∂θ
= ∂ξ

(
δwc$

∂$

∂ξ

)
+ (1 − µ)(ξ + λ0)

∂$c

∂ξ
, (5.14)

∂uc

∂θ
= δ

∂

∂ξ

(
w2

cuc
∂uc

∂ξ

)
+ (1 − µ)(ξ + λ0)

∂uc

∂ξ
. (5.15)

The initial conditions for equations (5.14), (5.15) are supposed to be the same as for u and
$. The proof of the existence of positive classical solutions uc and $c to the corresponding
Cauchy problems is standard in Parabolic Equations Theory, see [17]. Once the existence
has been established, the results of Parabolic Equations Theory yield

|u(ξ, θ) − uc(ξ, θ)| → 0

uniformly in R as θ → ∞. Hence, instead of direct asymptotic investigation for system
(5.11)-(5.13), we can study the asymptotic decay towards its equilibrium states of solutions
to the equations for uc and $c. The main advantage in working with the functions uc(ξ, θ)
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and $c(ξ, θ) is that there exist results wherein the convergence towards equilibrium has
been studied in detail, in particular for equations having a form similar to (5.14), (5.15),
see for example [18]. These results guarantee that

uc(ξ, θ) → h(ξ) and $c(ξ, θ) → f(ξ)

uniformly in R as θ → ∞.
Thus, the following theorem is valid:

Theorem 5.2 Solution 〈w2〉, ε of the model (5.1)-(5.3) behaves asymptotically like 〈w2
a〉,

εa as t→ ∞.
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