Ir al contenido

Documat


Empirical analysis of daily cash flow time-series and its implications for forecasting

  • Francisco Salas-Molina [1] ; Juan A. Rodríguez-Aguilar [3] ; Joan Serrà [4] ; Montserrat Guillen [2] ; Francisco J. Martin [5]
    1. [1] Universitat de València

      Universitat de València

      Valencia, España

    2. [2] Universitat de Barcelona

      Universitat de Barcelona

      Barcelona, España

    3. [3] IIIA-CSIC
    4. [4] Telefonica Research
    5. [5] BigML
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 42, Nº. 1, 2018, págs. 73-98
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Usual assumptions on the statistical properties of daily net cash flows include normality, absence of correlation and stationarity. We provide a comprehensive study based on a real-world cash flow data set showing that: (i) the usual assumption of normality, absence of correlation and stationarity hardly appear; (ii) non-linearity is often relevant for forecasting; and (iii) typical data transformations have little impact on linearity and normality. This evidence may lead to consider a more data-driven approach such as time-series forecasting in an attempt to provide cash managers with expert systems in cash management.

  • Referencias bibliográficas
    • Arratia, A., Cabana, A. and Cabana, E.M. (2016). A construction of continuous-time arma models by iterations of ornstein-uhlenbeck processes....
    • Baccarin, S. (2009). Optimal impulse control for a multidimensional cash management system with generalized cost functions. European Journal...
    • Baumol, W.J. (1952). The transactions demand for cash: An inventory theoretic approach. The Quarterly Journal of Economics, 66, 545–556.
    • Booth, A., Gerding, E. and Mcgroarty, F. (2014). Automated trading with performance weighted random forests and seasonality. Expert Systems...
    • Box, G.E. and D.R. Cox (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 211–252.
    • Box, G.E. and Jenkins, G.M. (1976). Time Series Analysis: Forecasting and Control, revised ed. HoldenDay.
    • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
    • Broomhead, D. and Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Systems, 2, 321–355.
    • Castle, J.L. and Hendry, D.F. (2010). A low-dimension portmanteau test for non-linearity. Journal of Econometrics, 158, 231–245.
    • Castle, J.L. and Hendry, D.F. (2012). Automatic selection for non-linear models. In System Identification, Environmental Modelling, and Control...
    • Cavaliere, G. and Xu, F. (2014). Testing for unit roots in bounded time series. Journal of Econometrics, 178, 259–272.
    • Cleveland, R.B., Cleveland, W.S., McRae, J.E. and Terpenning, I. (1990). Stl: A seasonal-trend decomposition procedure based on loess. Journal...
    • Constantinides, G.M. and Richard, S.F. (1978). Existence of optimal simple policies for discounted-cost inventory and cash management in continuous...
    • da Costa Moraes, M.B., Nagano, M.S. and Sobreiro, V.A. (2015). Stochastic cash flow management models: A literature review since the 1980s....
    • Dietterich, T.G. (2000). Ensemble methods in machine learning. In Multiple Classifier Systems, pp. 1–15. Springer.
    • Ducharme, G.R. and Lafaye de Micheaux, P. (2004). Goodness-of-fit tests of normality for the innovations in arma models. Journal of Time Series...
    • Duchesne, P., Lafaye de Micheaux, P. and Tagne Tatsinkou, J. (2016). Estimating the mean and its effects on neyman smooth tests of normality...
    • Emery, G.W. (1981). Some empirical evidence on the properties of daily cash flow. Financial Management, 10, 21–28.
    • Ewing, B.T. and Thompson, M.A. (2007). Symmetric and asymmetric stationarity tests of productivity. The Engineering Economist, 52, 355–365.
    • Franses, P.H. and Van Dijk, D. (2005). The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial...
    • Gormley, F.M. and Meade, N. (2007). The utility of cash flow forecasts in the management of corporate cash balances. European Journal of Operational...
    • Gregory, G. (1976). Cash flow models: a review. Omega, 4, 643–656.
    • Grubbs, F.E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11, 1–21.
    • Ho, T.K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence,...
    • Hodge, V.J. and Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22, 85–126.
    • Homonoff, R. and Mullins, D.W. (1975). Cash Management: an Inventory Control Limit Approach. Lexington Books.
    • Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366.
    • Horváth, L., Kokoszka, P. and Rice, G. (2014). Testing stationarity of functional time series. Journal of Econometrics, 179, 66–82.
    • Hyndman, R. and Athanasopoulos, G. (2013). Forecasting: Principles and Practice. http://otexts.org/fpp/. Last accessed: 2017-05-01.
    • Hyndman, R.J. and Khandakar, Y. (2008). Automatic Time Series for Forecasting: the Forecast Package for R. Kantz, H. and Schreiber, T. (2004)....
    • Keenan, D.M. (1985). A tukey nonadditivity-type test for time series nonlinearity. Biometrika, 72, 39–44.
    • Lee, T.-H., White, H. and Granger, C.W. (1993). Testing for neglected non-linearity in time series models: A comparison of neural network...
    • Lilliefors, H.W. (1967). On the kolmogorov-smirnov test for normality with mean and variance unknown. Journal of the American Statistical...
    • Ljung, G.M. and Box, G.E. (1978). On a measure of lack of fit in time series models. Biometrika, 65, 297–303.
    • Makridakis, S., Wheelwright, S.C. and Hyndman, R.J. (2008). Forecasting Methods and Applications. John Wiley & Sons.
    • Marathe, R.R. and Ryan, S.M. (2005). On the validity of the geometric brownian motion assumption. The Engineering Economist, 50, 159–192.
    • Miller, M.H. and Orr, D. (1966). A model of the demand for money by firms. The Quarterly Journal of Economics, 80, 413–435.
    • Miller, T.W. and Stone, B.K. (1985). Daily cash forecasting and seasonal resolution: Alternative models and techniques for using the distribution...
    • Moriña, D., Puig, P. and Valero, J. (2015). A characterization of the innovations of first order autoregressive models. Metrika, 78, 219–225....
    • Muller, P., Caliandro, C., Peycheva, V., Gagliardi, D., Marzocchi, C., Ramlogan, R. and Cox, D. (2015). Annual Report on European SMEs.
    • Nedović, L. and Devedžić, V. (2002). Expert systems in finance: a cross-section of the field. Expert Systems with Applications, 23,...
    • Neyman, J. (1937). “Smooth test” for goodness of fit. Scandinavian Actuarial Journal, 1937, 149–199.
    • Penttinen, M.J. (1991). Myopic and stationary solutions for stochastic cash balance problems. European Journal of Operational Research, 52,...
    • Pindado, J. and Vico, J. (1996). Evidencia empı́rica sobre los flujos de caja. Un nuevo enfoque en su tratamiento. Revista Española de...
    • Premachandra, I. (2004). A diffusion approximation model for managing cash in firms: An alternative approach to the miller-orr model. European...
    • Ramsey, J.B. (1969). Tests for specification errors in classical linear least-squares regression analysis. Journal of the Royal Statistical...
    • Ross, S.A., Westerfield, R. and Jordan, B.D. (2002). Fundamentals of Corporate Finance (Sixth ed.). McGraw-Hill.
    • Rousseeuw, P.J. and Leroy, A.M. (1987). Robust Regression and Outlier Detection, Volume 589. John Wiley & Sons.
    • Royston, J. (1982). An extension of Shapiro and Wilk’s W test for normality to large samples. Applied Statistics, 31, 115–124.
    • Salas-Molina, F., Martin, F.J., Rodrı́guez-Aguilar, J.A., Serrà, J. and Arcos, J.L. (2017). Empowering cash managers to achieve cost savings...
    • Srinivasan, V. and Kim, Y.H. (1986). Deterministic cash flow management: state of the art and research directions. Omega, 14, 145–166.
    • Stone, B.K. and Miller, T.W. (1987). Daily cash forecasting with multiplicative models of cash flow patterns. Financial Management, 16, 45–54.
    • Stone, B.K. and Wood, R.A. (1977). Daily cash forecasting: a simple method for implementing the distribution approach. Financial Management,...
    • Torabi, H., Montazeri, N.H. and Grané, A. (2016). A test for normality based on the empirical distribution function. SORT-Statistics and...
    • Venables, W.N. and Ripley, B.D. (2013). Modern Applied Statistics with S-PLUS. Springer Science & Business Media.
    • Wilcoxon, F., Katti, S. and Wilcox, R.A. (1970). Critical values and probability levels for the wilcoxon rank sum test and the wilcoxon signed...
    • Zagorecki, A. (2015). Prediction of methane outbreaks in coal mines from mulivariate time series using random forest. In Rough Sets, Fuzzy...
    • Zhang, G., Patuwo,B.E. and Hu, M.Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno