Ir al contenido

Documat


A construction of continuous-time ARMA models by iterations of Ornstein-Uhlenbeck processes

  • Argimiro Arratia [1] ; Alejandra Cabaña [2] ; Enrique M. Cabaña [3]
    1. [1] Universitat Politècnica de Catalunya

      Universitat Politècnica de Catalunya

      Barcelona, España

    2. [2] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

    3. [3] Universidad de la República

      Universidad de la República

      Uruguay

  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 40, Nº. 2, 2016, págs. 267-302
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We present a construction of a family of continuous-time ARMA processes based on p iterations of the linear operator that maps a Lévy process onto an Ornstein-Uhlenbeck process. The construction resembles the procedure to build an AR(p) from an AR(1). We show that this family is in fact a subfamily of the well-known CARMA(p,q) processes, with several interesting advantages, including a smaller number of parameters. The resulting processes are linear combinations of Ornstein-Uhlenbeck processes all driven by the same Lévy process. This provides a straightforward computation of covariances, a state-space model representation and methods for estimating parameters. Furthermore, the discrete and equally spaced sampling of the process turns to be an ARMA(p, p−1) process. We propose methods for estimating the parameters of the iterated Ornstein-Uhlenbeck process when the noise is either driven by a Wiener or a more general Lévy process, and show simulations and applications to real data.

  • Referencias bibliográficas
    • Barndorff-Nielsen, O.E. (2001). Superposition of Ornstein-Uhlenbeck type processes. Theory of Probability and Its Applications, 45, 175–194.
    • Bergstrom, A.R. (1984). Continuous time stochastic models and issues of aggregation over time.Handbook of Econometrics, II, 1145–1212.
    • Bergstrom, A.R. (1996). Survey of continuous-time econometrics. In Dynamic Disequilibrium Modeling: Theory and Applications: Proceedings of...
    • Box, G.E.P. Jenkins, G.M. and Reinsel, G.C. (1994). Time Series Analysis, Forecasting and Control. Prentice Hall.
    • Brockwell, P.J. (2004). Representations of continuous-time ARMA processes. Journal of Applied Probability, 41, 375–382.
    • Brockwell, P.J. (2009). Lévy–driven continuous–time ARMA processes. In Handbook of Financial Time Series, pages 457–480. Springer.
    • Cleveland, W.S. (1971). The inverse autocorrelations of a time series and their applications. Technometrics, 14, 277–298.
    • Doob, J.L. (1944). The elementary Gaussian processes. Annals of Mathematical Statistics, 15, 229–282.
    • Durbin, J. (1961). Efficient fitting of linear models for continuous stationary time-series from discrete data. Bulletin of the International...
    • Durbin, J. and Koopman, S.J. (2001). Time Series Analysis by State Space Methods. Oxford University Press.
    • Eliazar, I. and Klafter, J. (2009). From Ornstein-Uhlenbeck dynamics to long-memory processes and Fractional Brownian motion. Physical Review...
    • Granger, C.W.J. (1980). Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 14, 227–238.
    • Granger, C.W.J. and Morris, M.J. (1976). Time series modelling and interpretation. Journal of the Royal Statistical Society. Series A, 139,...
    • Jongbloed, G., van der Meulen, F.H. and van der Vaart, A.W. (2005). Nonparametric inference for Lévydriven Ornstein-Uhlenbeck processes....
    • Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer Science & Business Media.
    • McLeod, A.I. and Zhang, Y. (2006). Partial autocorrelation parameterization for subset autoregression. Journal of Time Series Analysis, 27,...
    • Nieto, B., Orbe, S. and Zarraga, A. (2014). Time-Varying Market Beta: Does the estimation methodology matter? SORT, 31, 13–42.
    • R Core Team. (2015). R: A Language and Environment for Statistical Computing. Technical report, R Foundation for Statistical Computing, Vienna,...
    • Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distribution, volume 68 of Cambridge Studies in Advance Mathematics. Cambridge...
    • Thornton, M.A. and Chambers, M.J. (2013). Continuous-time autoregressive moving average processes in discrete time: representation and embeddability....
    • Uhlenbeck, G.E. and Ornstein, L.S. (1930). On the theory of the Brownian motion. Physical Review, 36, 823–841.
    • Valdivieso, L., Schoutens, W. and Tuerlinckx, F. (2009). Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type. Statistical...
    • Yu, J. (2004). Empirical characteristic function estimation and its applications. Econometric Reviews, 23, 93–123.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno