Ir al contenido

Documat


Resumen de Are automatic metrics robust and reliable in specific machine translation tasks?

Mara Chinea Rios, Álvaro Peris Abril, Francisco Casacuberta Nolla Árbol académico

  • We present a comparison of automatic metrics against human evaluations of translation quality in several scenarios which were unexplored up to now. Our experimentation was conducted on translation hypotheses that were problematic for the automatic metrics, as the results greatly diverged from one metric to another. We also compared three different translation technologies. Our evaluation shows that in most cases, the metrics capture the human criteria. However, we face failures of the automatic metrics when applied to some domains and systems. Interestingly, we find that automatic metrics applied to the neural machine translation hypotheses provide the most reliable results. Finally, we provide some advice when dealing with these problematic domains.


Fundación Dialnet

Mi Documat