Ir al contenido

Documat


Marcadores nucleares de la competencia aritmética en preescolares

  • Autores: José Orrantia Rodríguez, Sara San Romualdo Corral, Laura Matilla Cordero, María del Rosario Sánchez Fernández, David Múñez Méndez, Lieven Verschaffel
  • Localización: Psychology, Society & Education, ISSN 1989-709X, ISSN-e 2171-2085, Vol. 9, Nº. 1, 2017, págs. 121-134
  • Idioma: español
  • DOI: 10.25115/psye.v9i1.466
  • Títulos paralelos:
    • Core markers of arithmetic competence in preschool children
  • Enlaces
  • Resumen
    • español

      Las habilidades numéricas y aritméticas son predictores críticos del éxito académico. En trabajos recientes, se ha cuestionado qué habilidades numéricas básicas se relacionan con la ejecución en aritmética, si el procesamiento de magnitudes numéricas no simbólicas o el procesamiento de magnitudes simbólicas. En el presente estudio se tomó una muestra de 104 escolares del segundo curso de Educación Infantil (EI), que completaron una tarea de comparación de magnitudes numéricas no simbólicas, una de comparación de magnitudes numéricas simbólicas y una tarea de enumeración, así como un test estandarizado de rendimiento en matemáticas (TEMA-3). Además, se controlaron habilidades cognitivas generales como inteligencia, velocidad de procesamiento, amplitud de memoria, control inhibitorio y memoria visuo-espacial. Para comprobar si las variables de procesamiento numérico predicen más allá de las variables de control, se realizó un análisis de regresión jerárquica, utilizando como variable dependiente el TEMA-3, e introduciendo las variables de control y las tareas de procesamiento numérico en sucesivos pasos. El modelo explicó el 65.5% de la varianza. Pero solo la comparación de magnitudes simbólicas y la enumeración contribuyeron a la varianza en ejecución aritmética más allá de las variables de control, mientras que la comparación de magnitudes no simbólicas no contribuyó significativamente. Estos resultados sugieren que un buen conocimiento de los números simbólicos es importante para el desarrollo matemático de los niños, y que particularmente el acceso a la magnitud desde los números simbólicos más que la representación de la magnitud per se es crucial para este desarrollo de la aritmética.

    • English

      The numerical and arithmetic skills are critical predictors of academic success. In current studies, it has been questioned what numerical skills relate with arithmetic achievement, whether the non-symbolic numerical magnitudes processing or the symbolic magnitudes processing. In the current study a sample of 104 preschool children was taken. They completed a non-symbolic numerical comparison task, a symbolic numerical comparison task and a dot enumeration task, as well as a standardized arithmetic performance test (TEMA-3). Moreover, general cognitive skills such a intelligence, processing speed, inhibitory control, memory span and visuo-spatial memory, were controlled. To test whether the variables of number processing predict in the absence of the above predictors, it was conducted a hierarchical regression analysis, taking the TEMA-3 as a dependent variable and introducing the other predictors and the numerical processing tasks in next steps. The model explained 65.5% of the variance. But only the symbolic magnitudes comparison and the enumeration contributed to the arithmetic achievement variance in absence of the control variables, while the non-symbolic magnitudes comparison did not contribute significantly. These results suggest that a good knowledge of symbolic numbers is important to the children’s mathematical development, being particularly crucial the access to the magnitude from symbolic numbers more than the magnitude representation per se.

  • Referencias bibliográficas
    • Ansari, D. (2012). The foundations of numerical and mathematical abilities: a literature review. Global Partnership for Education (GPE) working...
    • Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number processing measures in kindergarten explain unique variability...
    • Barth, H., La Mont, K., Lipton, J., &Spelke, E. S. (2005).Abstract number and arithmetic in preschool children. Proceedings of the National...
    • Barth, H., Starr, A., & Sullivan, J. (2009).Children's mappings of large number words to numerosities. Cognitive Development, 24,...
    • Butterworth, B., Varma, S., &Laurillard, D. (2011). Dyscalculia: from brain to education. Science, 332, 1049-1053.
    • Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Science, 14, 534-541.
    • Cohen-Kadosh, R., Lammertyn, J. & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and...
    • Chen, Q., & Li, J. (2014). Association between individual differences in nonsymbolic number acuity and math performance: A meta-analysis....
    • De Smedt, B. & Gilmore, C.K. (2011).Defective number module or impaired access?Numerical magnitude processing in first graders with mathematical...
    • De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and nonsymbolic numerical magnitude processing skills relate...
    • Dehaene, S. (1992).Varieties of numerical abilities. Cognition, 44(1-2), 1-42.
    • Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York: Oxford University Press.
    • Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A., Klebanov, P., et al. (2007). School readiness and later achievement....
    • Fazio, L. K., Bailey, D. H., Thompson, C. A., &Siegler, R. S (2014). Relations of different types of numerical magnitude representations...
    • Feigenson, L. & Carey, S. (2003) Tracking individuals via object files: evidence from infants’ manual search. Developmental Scicience,...
    • Feigenson, L., Dehaene, S., &Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.
    • Ginsburg, H. P., &Baroody, A. J. (2003). Test of early math ability. Austin, TX: PRO-ED.
    • Gray, S. A., & Reeve, R. A. (2014). Preschoolers’ dot enumeration abilities are markers of their arithmetic competence. PLoS One, 9(4),...
    • Halberda, J., &Feigenson, L. (2008).Developmental change in the acuity of the" Number Sense": The Approximate Number System in...
    • Halberda, J., & Ly, R. (2013).PANAmath: The psychophysical assessment of number-sense acuity. Unpublished manuscript, Johns Hopkins University.
    • Holloway, I. D., & Ansari, D. (2009).Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences...
    • Landerl, K. (2013). Development of numerical processing in children with typical and dyscalculic arithmetic skills -a longitudinal study....
    • Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting...
    • Leibovich, T., & Ansari, D. (2016). The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding...
    • Lipton, J. S., &Spelke, E. S. (2005). Preschool children's mapping of number words to nonsymbolicnumerosities. Child Development,...
    • Macmillan, N. A., & Creelman, C. D. (2005). Detection Theory: A User’s Guide. Mahwah, NJ: Lawrence Erlbaum Associates.
    • McCloskey, M. (2007).Quantitative literacy and developmental dyscalculias. In D. B. Berch,
    • M. M. M. Mazzocco (Eds.), Why is math so hard for some children (pp. 415-429). Baltimore, MD: Paul H. Brookes.
    • Moore, A. M., & Ashcraft, M. H. (2015). Children’s mathematical performance: Five cognitive tasks across five grades. Journal of Experimental...
    • Moyer, R. S., &Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(2), 1519–1520.
    • Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number.Journal of Experimental...
    • Raven, J. C., Court, J. H., & Raven, J. (1992). Standard progressive matrices.Oxford Psychologists Press, Oxford, UK.
    • Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal...
    • Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2016). Associations of non‐symbolic and...
    • Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading researchquarterly,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno