Ir al contenido

Documat


El espacio de Golomb y su no conexidad en pequeño

  • Autores: José del Carmen Alberto Domínguez, Gerardo Acosta, Gerardo Delgadillo Piñón, Maira Madriz Mendoza
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 35, Nº. 2, 2017, págs. 189-213
  • Idioma: español
  • DOI: 10.18273/revint.v35n2-2017004
  • Títulos paralelos:
    • The Golomb space and its non connectedness "im kleinen"
  • Enlaces
  • Resumen
    • español

      En el presente trabajo, estudiamos los espacios de Brown, que son conexos y no completamente de Hausdorff. Utilizando progresiones aritméticas, construimos una base BG para una topología τG de N, y mostramos que (N, τG), llamado el espacio de Golomb, es de Brown. También probamos que hay elementos de BG que son de Brown, mientras que otros están totalmente separados. Escribimos algunas consecuencias de este resultado. Por ejemplo, (N, τG) no es conexo en pequeño en ninguno de sus puntos. Esto generaliza un resultado probado por Kirch en 1969. También damos una prueba más simple de un resultado presentado por Szczuka en 2010.

    • English

      In the present paper we study Brown spaces which are connected and not completely Hausdorff. Using arithmetic progressions, we construct a base BG for a topology τG on N, and show that (N, τG), called the Golomb space is a Brown space. We also show that some elements of BG are Brown spaces, while others are totally separated. We write some consequences of such result. For example, the space (N, τG) is not connected "im kleinen" at each of its points. This generalizes a result proved by Kirch in 1969. We also present a simpler proof of a result given by Szczuka in 2010.

  • Referencias bibliográficas
    • Citas [1] Apostol T.M., Introduction to Analytic Number Theory, Springer Verlag, New York-Heidelberg, 1976.
    • [2] Brown M., "A countable connected Hausdorff space", in The April Meeting in New York, Bull. Amer. Math. Soc. 59 (1953), No. 4,...
    • [3] Clark P.L., Lebowitz-Lockard N. and Pollack P., "A note on Golomb topologies", Preprint.
    • [4] Engelking R., General Topology, Revised and Completed Edition, Sigma Series in Pure Mathematics Vol.6. Heldermann Verlag, Berlin, 1989.
    • [5] Fine B. and Rosenberger G., Number Theory. An Introduction via the Density of Primes, Second Edition, Birkhäuser, 2016.
    • [6] Furstenberg H., "On the infnitude of primes", Amer. Math. Monthly 62 (1955), No. 5, 353.
    • [7] Golomb S.W., "A connected topology for the integers", Amer. Math. Monthly 66 (1959), No 8, 663-665.
    • [8] Golomb S.W., "Arithmetica topologica", General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the Symposium...
    • [9] Kirch A.M., "A countable, connected, locally connected Hausdorff space", Amer. Math. Monthly 76 (1969), No. 2, 169-171.
    • [10] Margalef Roig J., Outerelo Domínguez E. and Pinilla Ferrando J.L., Topología, Editorial Alhambra, Madrid, 1979.
    • [11] Niven I., Zuckerman H.S. and Montgomery H.L., An Introduction to the Theory of Numbers, Fifth Edition, John Wiley and Sons, Inc., New...
    • [12] Steen L.A. and Seebach Jr. J.A., Counterexamples in Topology, Reprint of the Second (1978) Edition Original Springer-Verlag, New York....
    • [13] Szczuka P., "The connnectedness of arithmetic progressions in Furstenberg's, Golomb's and Kirch's topologies", Demonstratio...
    • [14] Szczuka P., "Connections between connected topological spaces on the set of positive integers", Cent. Eur. J. Math. 11 (2013),...
    • [15] Szczuka P., "Regular open arithmetic progressions in connected topological spaces on the set of positive integers", Glas. Mat....
    • [16] Szczuka P., "The closures of arithmetic progressions in the common division topology on the set of positive integers", Cent,...
    • [17] Szczuka P., "The closures of arithmetic progressions in Kirch's topology on the set of positive
    • integers", Int. J. Number Theory 11 (2015), No. 3, 673-682.
    • [18] Szczuka P., "Properties of the division topology on the set of positive integers", Int. J. Number Theory 12 (2016), No. 3, 775-785.
    • [19] Willard S., General Topology, Reprint of the 1970 Original Addison-Wesley, Rending, MA. Dover Publications, Inc., Mineola, New York,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno