Ir al contenido

Documat


Resolución de problemas aritméticos verbales. Un análisis de los libros de texto españoles

  • Santiago Vicente [1] ; Eva Manchado [1] ; Lieven Verschaffel [2]
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

    2. [2] KU Leuven

      KU Leuven

      Arrondissement Leuven, Bélgica

  • Localización: Culture and Education, Cultura y Educación, ISSN-e 1578-4118, ISSN 1135-6405, Vol. 30, Nº 1, 2018, págs. 87-104
  • Idioma: español
  • DOI: 10.1080/11356405.2017.1421606
  • Títulos paralelos:
    • Solving arithmetic word problems. An analysis of Spanish textbooks
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • español

      En este estudio se analiza si los libros de texto de matemáticas de Primaria de dos editoriales españolas presentan una dieta instruccional variada de problemas aditivos y multiplicativos de diferentes niveles de complejidad. Para ello se analizaron los problemas de todos los cursos de Primaria de las editoriales Santillana y SM, en función de dos niveles de complejidad: (a) procedimental (número de pasos necesarios para resolver el problema); y (b) semántico/matemática (estructura aditiva o multiplicativa, con sus diferentes subtipos). Los resultados muestran que: (a) esos problemas son tan simples que los libros por sí mismos no pueden considerarse una herramienta suficiente para enseñar a los alumnos a resolver los problemas más complejos; y (b) comparándolo con estudios previos, el diseño de los problemas apenas ha cambiado en los últimos 10 años. Estos resultados indican que es necesario enriquecer la variedad de los problemas de los libros tanto a nivel procedimental como semántico/matemático, y ayudar a los maestros a compensar esas carencias al utilizarlos en clase

    • English

      This study analyses whether the primary school mathematics textbooks from two Spanish publishers show a varied instructional diet of addition and multiplication problems at different levels of complexity. To do so, it analyses the problems in all the primary grades by the publishers Santillana and SM according to two levels of complexity: (a) procedural (number of steps needed to solve the problem); and (b) semantic/mathematical (addition or multiplication structures, with their different subtypes). The results show that: (a) these problems are so simple that the books themselves cannot be regarded as a sufficient tool to teach students to solve the more complex problems; and (b) if we compare them with previous studies, the design of the problems has hardly changed in 10 years. These results show that the variety of problems in books should be expanded both procedurally and semantically/mathematically, and teachers should be given assistance to compensate for these shortcomings when using these textbooks in class

  • Referencias bibliográficas
    • Apple, M. (1992). The text and cultural politics. Educational Researcher, 21(7), 4–11.
    • Carpenter, P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (1999). Children’s mathematics. Cognitively guided instruction. Portsmouth,...
    • Carpenter, T. P., & Moser, J. M. (1984). The acquisition of addition and subtraction concepts. In: R. Lesh, & M. Landau (Eds.), The...
    • Chapin, S., & Johnson, A. (2000). Math matters: Understanding the Math You Teach, grades K-6. Sausalico, CA: Mach Solucions Publications. ...
    • Cummins, D. D., Kintsch, W., Reusser, K., & Weimer, R. (1988). The role of understanding in solving word problems. Cognitive Psychology,...
    • García, A., Jiménez, J. E., & Hess, S. (2006). Solving arithmetic word problems: An analysis of classification as a function of difficulty...
    • Greer, B. (1992). Multiplication and division as models of situations. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching...
    • Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful...
    • Heller, J. I., & Greeno, J. G. (1978). Semantic processing in arithmetic word problem solving. Paper presented at the Midwestern Psychological...
    • Hiebert, J., Gallimore, R., Garnier, H., Givvin, K. B., Hollingsworth, H., Jacobs, J., … Stigler, P.(2003). Teaching mathematics in seven...
    • Mayer, R. E., Sims, V., & Tajika, H. (1995). A comparison of how textbooks teach mathematical problem solving in Japan and the United...
    • Mullis, I., Martin, M., & Foy, P. (2008). TIMSS 2007 international mathematics report: Findings from IEA’s Trends in International Mathematics...
    • Orrantia, J., González, L. B., & Vicente, S. (2005). Analysing arithmetic word problems in Primary Education text books. Infancia y Aprendizaje,...
    • Puig, L., & Cerdán, F. (1995). Problemas aritméticos escolares. Madrid: Editorial Síntesis.
    • Riley, M. S., & Greeno, J. G. (1988). Developmental analysis of understanding language about quantities of solving problems. Cognition...
    • Rosales, J., Orrantia, J., Vicente, S., & Chamoso, J. (2008a). Arithmetic problem solving in the classroom: What do teachers do when they...
    • Rosales, J., Orrantia, J., Vicente, S., & Chamoso, J. (2008b). Studying mathematics problem-solving classrooms. A comparison between the...
    • Rosales, J., Vicente, S., Chamoso, J., Múñez, D., & Orrantia, J. (2012). Teacher student interaction in joint word problem solving. The...
    • Sánchez, M. R., & Vicente, S. (2015). Modelos y procesos de resolución de problemas aritméticos verbales propuestos por los libros de...
    • Schoenfeld, A. H. (1991). On mathematics as sense-making: An informal attack on the unfortunate divorce of formal and informal mathematics....
    • Stewart, V. (2011). Singapore: Rapid improvement followed by strong performance. In OECD (Ed.),Lessons from PISA for the United States: Strong...
    • Stigler, J. W., & Hiebert, J. (1999). The teaching gap. New York, NY: Free Press.
    • Stigler, J. W., Fuson, K. C., Ham, M., & Kim, M. S. (1986). An analysis of addition and subtraction word problems in American and Soviet...
    • Vergnaud, G. (1991). El niño, las Matemáticas y la realidad. México: Trillas.
    • Verschaffel, L., De Corte, E., & Pauwels, A. (1992). Solving compare problems: An eye movement test of Lewis and Mayer’s consistency hypothesis....
    • Verschaffel, L., Depaepe, F., & Van Dooren, W. (2014). Word problems in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics...
    • Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse: Swets & Zeitlinger Publishers.
    • Vicente, S., Rosales, J., Chamoso, J. M., & Múñez, D. (2013). Analyzing educational practice in Spanish Primary education mathematics...
    • Xin, Y. P. (2007). Word problem solving tasks in textbooks and their relation to student performance. The Journal of Educational Research,...
    • Chapman, O. (2006). Classroom practices for context of mathematics word problems. Educational Studies in Mathematics, 62, 211–230.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno