Ir al contenido

Documat


Joint models for longitudinal counts and left-truncated time-to event data with applications to health insurance

  • Xavier Piulachs [1] ; Ramon Alemany [1] Árbol académico ; Montserrat Guillén [1] Árbol académico ; Dimitris Rizopoulos [2] Árbol académico
    1. [1] Universitat de Barcelona

      Universitat de Barcelona

      Barcelona, España

    2. [2] Erasmus University Medical Center

      Erasmus University Medical Center

      Países Bajos

  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 41, Nº. 2, 2017, págs. 347-372
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Aging societies have given rise to important challenges in the field of health insurance. Elderly policyholders need to be provided with fair premiums based on their individual health status, whereas insurance companies want to plan for the potential costs of tackling lifetimes above mean expectations. In this article, we focus on a large cohort of policyholders in Barcelona (Spain), aged 65 years and over. A shared-parameter joint model is proposed to analyse the relationship between annual demand for emergency claims and time until death outcomes, which are subject to left truncation. We compare different functional forms of the association between both processes, and, furthermore, we illustrate how the fitted model provides time-dynamic predictions of survival probabilities. The parameter estimation is performed under the Bayesian framework using Markov chain Monte Carlo methods.

  • Referencias bibliográficas
    • Abrahamowicz, M., Beauchamp, M.-E. and Sylvestre, M.-P. (2011). Comparison of alternative models for linking drug exposure with adverse effects....
    • Barlow, W. and Prentice, R. (1988). Residuals for relative risk regression. Biometrika, 75, 65–74.
    • Boucher, J.-P., Denuit, M. and Guillén, M. (2008). Models of insurance claim counts with time dependence based on generalization of Poisson...
    • Cameron, C. and Trivedi, K. (1998). Regression Analysis of Count Data. Number 30. Cambridge University Press. Cambridge, England.
    • Charpentier, A. (2015). Computational Actuarial Science with R. Boca Raton, Florida: Chapman and Hall/CRC The R Series.
    • Chen, B., Covinsky, K., Stijacic, C., Adler, N. and Williams, B. (2012). Subjective social status and functional decline in older adults....
    • Dow, W., Schoeni, R., Adler, N. and Stewart, J. (2010). Evaluating the evidence base: policies and interventions to address socioeconomic...
    • Dunn, K. and Smyth, G. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5, 236–244.
    • Eilers, P. and Marx, B. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89–121.
    • Eilers P., Marx, B. and Durbán, M. (2015). Twenty years of P-splines. SORT, 39, 149–186.
    • Gourieroux, C., Monfort, A. and Trognon, A. (1984). Pseudo maximum likelihood methods: theory. Econometrica, 52, 681–700.
    • Greene, W. (2008). Functional forms for the negative binomial model for count data. Economics Letters, 99, 585–590.
    • Harrison, X. (2014). Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616.
    • Hartig, F. (2017). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.1.5.
    • Hilbe, J. (2011). Negative Binomial Regression, 2nd Edition. Cambridge: Cambridge University Press.
    • Hinde, J. and Demétrio, C. (1998). Overdispersion: models and estimation. Computational Statistics and Data Analysis, 27, 151–170.
    • Ismail, N. and Jemain, A. (2007). Handling overdispersion with negative binomial and generalized Poisson regression models. In Casualty Actuarial...
    • Ivanova, A., Molenberghs, G. and Verbeke, G. (2016). Mixed models approaches for joint modelling of different types of responses. Journal...
    • Klein, J. and Moeschberger, M. (2003). Survival Analysis: Techniques for Censored and Truncated Data. New York: Springer.
    • Lamarca, R., Alonso, J., Gómez, G. and Muñoz, A. (1998). Left-truncated data with age as time scale: an alternative for survival analysis...
    • Lawless, J. (1987). Negative binomial and mixed Poisson regression. The Canadian Journal of Statistics, 15, 209–225.
    • Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data. New York: SpringerVerlag.
    • Murawska, M., Rizopoulos, D. and Lessaffre, E. (2012). A two-stage joint model for nonlinear longitudinal response and a time-to-event with...
    • Piulachs, X., Alemany, R., Guillén, M. and Serrat, C. (2015). Joint modelling of health care usage and longevity uncertainty for an insurance...
    • Plummer, M. (2003). JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International...
    • Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated...
    • Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event Data with Applications in R. Chapman and Hall/CRC Biostatistic Series....
    • Rizopoulos, D. (2016). The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. Journal of Statistical...
    • Rizopoulos, D. and Ghosh, P. (2011). A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event....
    • Serrat, C., Rue, M., Armero, C., Piulachs, X., Perpiñán, H., Forte, A., Páez, A. and Gómez, G. (2015). Frequentist and Bayesian approaches...
    • Spiegelhalter, D., Best, N., Carlin, B. and van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal...
    • Thiébaut, A. and Bénichou, J. (2004). Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study. Statistics...
    • Tsiatis, A. and Davidian, M. (2004). Joint Modelling of longitudinal and time-to-event data: an overview. Statistica Sinica, 14, 809–834.
    • Uzunogullari, U. and Wang, J. (1992). A comparison of hazard rate estimators for left-truncated and rightcensored data. Biometrika, 79, 297–310.
    • Viviani, S., Alfó, M. and Rizopoulos, D. (2012). Generalized linear mixed joint model for longitudinal and survival outcomes. Statistics...
    • Yu, M., Taylor, J. and Sandler, H. (2008). Individual prediction in prostate cancer studies using a joint longitudinal survival-cure model....
    • Zuur, A., Ieno, E., Walker, N., Saveliev, A. and Smith, G. (2009). Mixed Effects Models and Extensions in Ecology with R. New York: Springer.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno