Ir al contenido

Documat


Twenty years of P-splines (invited article)

  • Paul H.C. Eilers [2] ; Brian D. Marx [1] ; Maria Durbán [3] Árbol académico
    1. [1] Louisiana State University

      Louisiana State University

      Estados Unidos

    2. [2] Erasmus University Medical Centre
    3. [3] Universidad Carlos III. Departamento de Estadística
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 39, Nº. 2, 2015, págs. 149-186
  • Idioma: inglés
  • Enlaces
  • Resumen
    • P-splines first appeared in the limelight twenty years ago. Since then they have become popular in applications and in theoretical work. The combination of a rich B-spline basis and a simple difference penalty lends itself well to a variety of generalizations, because it is based on regression. In effect, P-splines allow the building of a “backbone” for the “mixing and matching” of a variety of additive smooth structure components, while inviting all sorts of extensions: varying-coefficient effects, signal (functional) regressors, two-dimensional surfaces, non-normal responses, quantile (expectile) modelling, among others. Strong connections with mixed models and Bayesian analysis have been established. We give an overview of many of the central developments during the first two decades of P-splines.

  • Referencias bibliográficas
    • Altman, N. (2000). Theory & methods: Krige, smooth, both or neither? Australian & New Zealand Journal of Statistics, 42, 441–461.
    • Andriyana, Y., Gijbels, I. and Verhasselt, A. (2014). P-splines quantile regression estimation in varying coefficient models. Test, 23, 153–194.
    • Antoniadis, A., Gregoire, G. and McKeague, I. (2004). Bayesian estimation in single-index models. Statistica Sinica, 14, 1147–1164.
    • Azmon, A., Faes, C. and Hens, N. (2014). On the estimation of the reproduction number based on misreported epidemic data. Statistics In Medicine,...
    • Basile, R., Durbán, M., Minguez, R., Montero, J. and Mur, J. (2014). Modeling regional economic dynamics: spatial dependence, spatial heterogeneity...
    • Belitz, C. and Lang, S. (2008). Simultaneous selection of variables and smoothing parameters in structured additive regression models. Computational...
    • Bollaerts, K., Eilers, P. H. C. and Aerts, M. (2006). Quantile regression with monotonicity restrictions using P-splines and the l1-norm....
    • Brezger, A. and Lang, S. (2006). Generalized structured additive regression based on Bayesian P-splines. Computational Statistics & Data...
    • Brezger, A., Kneib, T. and Lang, S. (2005). BayesX: analysing Bayesian structured additive regression models. Journal of Statistical Software,...
    • Brockhaus, S., Scheipl, F., Torsten, H. and Greven, S. (2015). The functional linear array model. Statistical Modelling, 15, 279–300.
    • Brumback, B., Ruppert, D. and Wand, M. (1999). Comment on: variable selection and function estimation in additive nonparametric regression...
    • Bugli, C. and Lambert, P. (2006). Functional ANOVA with random functional effects: an application to event-related potentials modelling for...
    • Camarda, C. G. (2012). MortalitySmooth: an R package for smoothing Poisson counts with P-splines. Journal of Statistical Software, 50, 1–24.
    • Camarda, C. G., Eilers, P. H. C. and Gampe, J. (2008). Modelling general patterns of digit preference. Statistical Modelling, 8, 385–401.
    • Claeskens, G., Krivobokova, T. and Opsomer, J. D. (2009). Asymptotic properties of penalized spline estimators. Biometrika, 96, 529–544.
    • Coull, B., Schwartz, J. and Wand, M. (2001). Respiratory health and air pollution: additive mixed model analyses. Biostatistics, 2, 337–349.
    • Crainiceanu, C., Ruppert, D. and Carroll, R. (2007). Spatially adaptive Bayesian penalized splines with heteroscedastic errors. Journal of...
    • Currie, I., Durbán, M. and Eilers, P. (2004). Smoothing and forecasting mortality rates. Statistical Modelling, 4, 279–298.
    • Currie, I. D. and Durbán, M. (2002). Flexible smoothing with p-splines: a unified approach. Statistical Modelling, 2, 333–349.
    • Currie, I. D., Durbán, M. and Eilers, P. H. C. (2006). Generalized linear array models with applications to multidimensional smoothing....
    • de Rooi, J. J., van der Pers, N. M., Hendrikx, R. W. A., Delhez, R., Bottger, A. J. and Eilers, P. H. C. (2014). Smoothing of X-ray diffraction...
    • Dobson, A. and Barnett, A. (2008). An Introduction to Generalized Linear Models, 3d ed. CRC Press.
    • Durbán, M. and Currie, I. (2003). A note on P-spline additive models with correlated errors. Computational Statistics, 18, 251–262.
    • Durbán, M., Harezlak, J., Wand, M. and Carroll, R. (2005). Simple fitting of subject-specific curves for longitudinal data. Statistics in...
    • Eilers, P. (1999). Discussion on: the analysis of designed experiments and longitudinal data by using smoothing splines. Journal of the Royal...
    • Eilers, P. (2005). Unimodal smoothing. Journal Of Chemometrics, 19, 317–328.
    • Eilers, P. (2009). The smooth complex logarithm and quasi-periodic models. In T. Kneib and G. Tutz, editors, Statistical Modelling and Regression...
    • Eilers, P. and de Menezes, R. (2005). Quantile smoothing of array CGH data. Bioinformatics, 21, 1146– 1153.
    • Eilers, P., Currie, I. and Durbán, M. (2006). Fast and compact smoothing on large multidimensional grids. Computational Statistics &...
    • Eilers, P. H. C. (2003). A perfect smoother. Analytical Chemistry, 75, 3631–3636.
    • Eilers, P. H. C. (2007). III-posed problems with counts, the composite link model and penalized likelihood. Statistical Modelling, 7, 239–254.
    • Eilers, P. H. C. and Borgdorff, M. W. (2007). Non-parametric log-concave mixtures. Computational Statistics & Data Analysis, 51, 5444–5451.
    • Eilers, P. H. C. and Goeman, J. J. (2004). Enhancing scatterplots with smoothed densities. Bioinformatics, 20, 623–628.
    • Eilers, P. H. C. and Marx, B. D. (1992). Generalized linear models with P-splines. In Proceedings of GLIM 92 and the 7th International Workshop...
    • Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89–102.
    • Eilers, P. H. C. and Marx, B. D. (2002). Generalized linear additive smooth structures. Journal of Computational and Graphical Statistics,...
    • Eilers, P. H. C. and Marx, B. D. (2003). Multivariate calibration with temperature interaction using twodimensional penalized signal regression....
    • Eilers, P. H. C. and Marx, B. D. (2010). Splines, knots and penalties. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 637–653.
    • Eilers, P. H. C., Gampe, J., Marx, B. D. and Rau, R. (2008). Modulation models for seasonal time series and incidence tables. Statistics In...
    • Eilers, P. H. C., Li, B. and Marx, B. D. (2009). Multivariate calibration with single-index signal regression. Chemometrics and Intelligent...
    • Fahrmeir, L. and Kneib, T. (2009). Propriety of posteriors in structured additive regression models: Theory and empirical evidence. Journal...
    • Fahrmeir, L., Kneib, T. and Lang, S. (2004). Penalized structured additive regression for space-time data: a Bayesian perspective. Statistica...
    • Fahrmeir, L., Kneib, T. and Konrath, S. (2010). Bayesian regularization in structured additive regression: a unifying perspective on shrinkage,...
    • Fraaije, R. G. A., ter Braak, C. J. F., Verduyn, B., Breeman, L. B. S., Verhoeven, J. T. A. and Soons, M. B. (2015). Early plant recruitment...
    • Frasso and Eilers (2015). Land V-curves for optimal smoothing. Statistical Modelling, 15, 91–111.
    • Green, P. J. (1987). Penalized likelihood for general semi-parametric regression models. International Statistical Review/Revue Internationale...
    • Greven, S. (2008). Non-Standard Problems in Inference for Additive and Linear Mixed Models. Cuvillier Verlag.
    • Gu, C. (2002). Smoothing Spline ANOVA Models. Springer.
    • Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34, 561–580.
    • Harezlak, J., Coull, B. A., Laird, N. M., Magari, S. R. and Christiani, D. C. (2007). Penalized solutions to functional regression problems....
    • Harville, D. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical...
    • Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall.
    • Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society. Series B-Statistical Methodology,...
    • Heim, S., Fahrmeir, L., Eilers, P. H. C. and Marx, B. D. (2007). 3D space-varying coefficient models with application to diffusion tensor...
    • Henderson, C. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31, 423–447.
    • Hofner, B., Mayr, A., Robinzonov, N. and Schmid, M. (2014). Model-based boosting in R: a hands-on tutorial using the R package mboost. Computational...
    • Jarrow, R., Ruppert, D. and Yu, Y. (2004). Estimating the interest rate term structure of corporate debt with a semiparametric penalized spline...
    • Jullion, A. and Lambert, P. (2007). Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines...
    • Kammann, E. and Wand, M. (2003). Geoadditive models. Journal of the Royal Statistical Society Series C-Applied Statistics, 52, 1–18.
    • Kauermann, G. (2005a). A note on smoothing parameter selection for penalized spline smoothing. Journal of statistical planning and inference,...
    • Kauermann, G. (2005b). Penalized spline smoothing in multivariable survival models with varying coefficients. Computational Statistics &...
    • Kauermann, G. and Khomski, P. (2006). Additive two-way hazards model with varying coefficients. Computational Statistics & Data Analysis,...
    • Kauermann, G., Krivobokova, T. and Fahrmeir, L. (2009). Some asymptotic results on generalized penalized spline smoothing. Journal of the...
    • Kauermann, G., Krivobokova, T. and Semmler, W. (2011). Filtering time series with penalized splines. Studies in Nonlinear Dynamic & Econometrics,...
    • Kauermann, G., Schellhase, C. and Ruppert, D. (2013). Flexible copula density estimation with penalized hierarchical B-splines. Scandinavian...
    • Kneib, T. and Fahrmeir, L. (2006). Structured additive regression for categorical space-time data: A mixed model approach. Biometrics, 62,...
    • Kneib, T., Konrath, S. and Fahrmeir, L. (2011). High dimensional structured additive regression models: Bayesian regularization, smoothing...
    • Kohn, R., Ansley, C. and Tharm, D. (1991). The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters....
    • Krivobokova, T. and Kauermann, G. (2007). A note on penalized spline smoothing with correlated errors. Journal of the American Statistical...
    • Krivobokova, T., Kauermann, G. and Archontakis, T. (2006). Estimating the term structure of interest rates using penalized splines. Statistical...
    • Lambert, P. (2011). Smooth semiparametric and nonparametric Bayesian estimation of bivariate densities from bivariate histogram data. Computational...
    • Lambert, P. and Eilers, P. H. C. (2009). Bayesian density estimation from grouped continuous data. Computational Statistics & Data Analysis,...
    • Lang, S. and Brezger (2004). Bayesian P-splines. Journal of Computational and Graphical Statistics, 13, 183–212.
    • Lee, D.-J. and Durbán, M. (2009). Smooth-CAR mixed models for spatial count data. Computational Statistics & Data Analysis, 53, 2968–2979.
    • Lee, D.-J. and Durbán, M. (2011). P-spline ANOVA type interaction models for spatio-temporal smoothing. Statistical Modelling, 11, 49–69.
    • Lee, D.-J., Durbán, M. and Eilers, P. (2013). Efficient two-dimensional smoothing with P-spline ANOVA mixed models and nested bases. Computational...
    • Leitenstorfer, F. and Tutz, G. (2011). Estimation of single-index models based on boosting techniques. Statistical Modelling, 11, 203–217.
    • Li, B. and Marx, B. D. (2008). Sharpening P-spline signal regression. Statistical Modelling, 8, 367–383.
    • Li, Y. and Ruppert, D. (2008). On the asymptotics of penalized splines. Biometrika, 95, 415–436.
    • Lu, X., Chen, G., Singh, R. and Song, P. (2006). A class of partially linear single-index survival models. Canadian Journal of Statistics,...
    • Lu, Y., Zhang, R. and Zhu, L. (2008). Penalized spline estimation for varying-coefficient models. Communications in Statistics-Theory and...
    • Malfait, N. and Ramsay, J. (2003). The historical functional linear model. Canadian Journal of Statistics, 31, 185–201.
    • Marx, B. D. (2010). P-spline varying coefficient models for complex data. In G. Tutz and T. Kneib, editors, Statistical Modelling and Regression...
    • Marx, B. D. (2015). Varying-coefficient single-index signal regression. Chemometrics and Intelligent Laboratory Systems, 143, 111–121.
    • Marx, B. D. and Eilers, P. H. C. (1998). Direct generalized additive modeling with penalized likelihood. Computational Statistics & Data...
    • Marx, B. D. and Eilers, P. H. C. (1999). Generalized linear regression on sampled signals and curves: a P-spline approach. Technometrics,...
    • Marx, B. D. and Eilers, P. H. C. (2005). Multidimensional penalized signal regression. Technometrics, 47, 13–22.
    • Marx, B. D., Eilers, P. H. C., Gampe, J. and Rau, R. (2010). Bilinear modulation models for seasonal tables of counts. Statistics and Computing,...
    • Marx, B. D., Eilers, P. H. C. and Li, B. (2011). Multidimensional single-index signal regression. Chemometrics and Intelligent Laboratory...
    • Mayr, A., Fenske, N., Hofner, B., Kneib, T. and Schmid, M. (2012). Generalized additive models for location, scale and shape for high dimensional...
    • McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F. and Ruppert, D. (2014). Functional Generalized Additive Models. Journal of Computational...
    • Morris, J. S. (2015). Functional Regression. Annual Review of Statistics and its Application, 2, 321–359.
    • Myers, R. (1989). Classic and Modern Regression with Applications. PWS-KENT.
    • O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems (with discussion). Statistical Science, 1, 505–527.
    • Patterson, H. and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58, 545–554.
    • Pya, N. and Wood, S. (2015). Shape constrained additive models. Statistics and Computing, 25, 543–559.
    • R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
    • Ramsay, J. and Silverman, B. (2003). Functional Data Analysis, 2nd ed. Springer.
    • Ramsay, J. O., Hooker, G., Campbell, D. and Cao, J. (2007). Parameter estimation for differential equations: a generalized smoothing approach....
    • Rigby, R. and Stasinopoulos, D. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Computational Statistics...
    • Rippe, R. C. A., Meulman, J. J. and Eilers, P. H. C. (2012a). Reliable single chip genotyping with semiparametric log-concave mixtures. Plos...
    • Rippe, R. C. A., Meulman, J. J. and Eilers, P. H. C. (2012b). Visualization of genomic changes by segmented smoothing using an L0 penalty....
    • Rizzi, S., Gampe, J. and Eilers, P. H. C. (2015). Efficient estimation of smooth distributions from coarsely grouped data. American Journal...
    • Rodriguez-Alvarez, M., Lee, D., Kneib, T., Durbán, M. and Eilers, P. (2015). Fast smoothing parameter separation in multidimensional generalized...
    • Rue, H., Martino, S. and Chopin, N. (2009). Approximate bayesian inference for latent gaussian models using integrated nested Laplace approximations...
    • Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal of Computational and Graphical Statistics, 11, 735–757.
    • Ruppert, D. and Carroll, R. (2000). Spatially-adaptive penalties for spline fitting. Australian & New Zealand Journal Of Statistics, 42,...
    • Ruppert, D., Wand, M. and Carroll, R. (2003). Semiparametric Regression. Cambridge.
    • Ruppert, D., Wand, M. P. and Carroll, R. J. (2009). Semiparametric regression during 2003-2007. Electronic Journal of Statistics, 3, 1193–1256.
    • Schall, R. (1991). Estimation in generalized linear models with random effects. Biometrika, 78, 719–727.
    • Scheipl, F., Staicu, A. and Greven, S. (2015). Functional additive mixed models. Journal of Computational and Graphical Statistics, 24, 477–501.
    • Schellhase, C. and Kauermann, G. (2012). Density estimation and comparison with a penalized mixture approach. Computational Statistics, 27,...
    • Schmid, M. and Hothorn, T. (2008). Boosting additive models using component-wise P-Splines. Computational Statistics & Data Analysis,...
    • Schnabel, S. K. and Eilers, P. H. C. (2009). Optimal expectile smoothing. Computational Statistics & Data Analysis, 53, 4168–4177.
    • Schnabel, S. K. and Eilers, P. H. C. (2013). Simultaneous estimation of quantile curves using quantile sheets. ASTA-Advances In Statistical...
    • Sobotka, F. and Kneib, T. (2012). Geoadditive expectile regression. Computational Statistics & Data Analysis, 56, 755–767.
    • Sobotka, F., Kauermann, G., Waltrup, L. S. and Kneib, T. (2013). On confidence intervals for semiparametric expectile regression. Statistics...
    • Speed, T. (1991). Comment on: that BLUP is a good thing: the estimation of random effects. Statistical Science, 6, 15–51.
    • Thompson, R. and Baker, R. (1981). Composite link functions in generalized linear models. Applied Statistics, 30, 125–131.
    • Tutz, G. and Binder, H. (2006). Generalized additive modeling with implicit variable selection by likelihoodbased boosting. Biometrics, 62,...
    • Verbyla, A., Cullis, B., Kenward, M. and Welham, S. (1999). The analysis of designed experiments and longitudinal data using smoothing splines....
    • Wand, M. (2003). Smoothing and mixed models. Computational Statistics, 18, 223–249.
    • Wand, M. P. and Ormerod, J. T. (2008). On semiparametric regression with O’Sullivan penalized splines. Australian & New Zealand Journal...
    • Wang, X., Shen, J. and Ruppert, D. (2011). On the asymptotics of penalized spline smoothing. Electronic Journal of Statistics, 5, 1–17.
    • Wang, X.-F., Hu, B., Wang, B. and Fang, K. (2014). Bayesian generalized varying coefficient models for longitudinal proportional data with...
    • Wang, Y. (1998). Mixed effects smoothing spline analysis of variance. Journal of the Royal Statistical Society. Series B-Statistical Methodology,...
    • Whitehorn, N., van Santen, J. and Lafebre, S. (2013). Penalized Splines for smooth representation of highdimensional Monte Carlo datasets....
    • Whittaker, E. (1923). On a new method of graduation. Proceedings of the Edinburgh Mathematical Society, 41, 63–75.
    • Wood, S. (2004). Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical...
    • Wood, S. (2006a). Generalized Additive Models: An Introduction with R. CRC Press.
    • Wood, S. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models....
    • Wood, S., Scheipl, F. and Faraway, J. (2013). Straightforward intermediate rank tensor product smoothing in mixed models. Statistics and Computing,...
    • Wood, S. N. (2006b). On confidence intervals for generalized additive models based on penalized regression splines. Australian & New Zealand...
    • Wood, S. N., Goude, Y. and Shaw, S. (2015). Generalized additive models for large data sets. Journal of the Royal Statistical Society Series...
    • Xiao, L., Li, Y. and Ruppert, D. (2013). Fast bivariate P-splines: the sandwich smoother. Journal of the Royal Statistical Society Series...
    • Ye, J. (1998). On measuring and correcting the effects of data mining and model selection . Journal of the American Statistical Association,...
    • Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially linear single-index models. Journal of the Americal Statistical Association,...
    • Zhang, D., Lin, X., Raz, J. and Sowers, M. (1998). Semiparametric stochastic mixed models for longitudinal data. Journal of the Americal Statistical...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno