Ir al contenido

Documat


Developmental stages and important periods of probabilitycognition in 6 to 14 year-old students

  • Autores: Zikun Gong, He Shengqing
  • Localización: Avances de investigación en educación matemática: AIEM, ISSN-e 2254-4313, Nº. 11, 2017, págs. 47-68
  • Idioma: inglés
  • DOI: 10.35763/aiem.v1i11.194
  • Títulos paralelos:
    • 6-14 ans élèves connaissance de concept probabilité et périodes importante d'étude
    • Estágio de desenvolvimento cognitivo de o conceito de probabilidade e importantes períodos deestudo em estudantes 6-14 anos de idade.
    • Etapas de desarrollo y períodos importantes de cognición probabilística en estudiantes de 6 a14 años
  • Enlaces
  • Resumen
    • español

      En este estudio se seleccionaron 906 estudiantes de 6 a 14 años de edad y se estudiaron las etapas de desarrollo y los períodos de cognición de la probabilidad. El estudio muestra que la cognición probabilística de los estudiantes de 6 a 14 años experimenta las siguientes 5 etapas: desarrollo lento I (6-7 años), desarrollo rápido I (8-9 años), desarrollo lento II (10 años), desarrollo rápido II (11-12 años) y fase consolidada (13-14 años). Además, hay dos períodos importantes en el desarrollo cognitivo de los estudiantes: el primero a lo 8-9 años de edad y el segundo a los 11-12. Incluso en la etapa de desarrollo más alta, los estudiantes pueden entender la representación numérica, la distribución de probabilidad y la representación fraccional mientras que no pueden alcanzar el nivel de maestría, lo que sugiere la limitación de la cognición probabilística de los estudiantes. En consecuencia, el plan de estudios debe tener en cuenta el nivel de desarrollo cognitivo de los estudiantes y establecer objetivos cognitivos razonables.

    • English

      This study chose 906 students of 6 to 14 years of age and focused on the developmental stages and important periods of probability cognition. The study shows that probability cognition of students aged 6-14 experiences the following 5 stages: slow development stage I (6-7 years old), quick development stage I (8-9 years old), slow development stage II (10 years old), quick development stage II (11-12 years old) and stagnant stage (13-14 years old). Additionally, there are two important periods in students’ cognitive development: 8-9 years old is the first period and 11-12 is the second. Even at the highest development stage, students can just understand the number representation, probability distribution and fraction representation while ca not reach the mastery level, which suggests the limitation of students’ probability cognition. Accordingly, curriculum should take students’ cognitive development level into account and set reasonable cognitive objectives.

    • français

      906 élèves âgés de 6-14 ont été testés pour étudier le stade de développement et la période importante sur leurs connaissances de probabilité. Les résultats ont montré que leur développement cognitif a connu cinq étages: première période de développement lent(6-7 ans), première période de développement rapide (8-9 ans), deuxième période de développement lent (10 ans), deuxième développement rapide (11-12 ans) et une période de stagnation du développement (13-14 ans). En plus, le développement cognitif a deux périodes importantes: les 8-9 premières années de l'âge est une période importante où les enfants maîtrisent le concept de distribution aléatoire et leur connaissance de quantité accroit rapidement; les années de 11-12 ans sont la deuxième période importante qui n’a pas beaucoup de progrès par rapport à la période précédente. La deuxième période de développement rapide a connu le plus haut niveau de leurs connaissances de probabilité et de concept. Cependant, leur connaissance pour la quantité et la distribution aléatoire a atteint seulement le niveau de compréhension. Ceci suggère que la connaissance de la probabilité des élèves a ses limites. Par conséquent, il faut repérer précisément

    • português

      906 estudantes com idades entre 6-14 foram testadas para investigar o conceito de estágio de desenvolvimento cognitivo da sua probabilidade e os períodos importantes. Os resultados mostraram que o desenvolvimento cognitivo tem experimentado um período de crescimento lento 1 (6-7 anos de idade) um período de rápido desenvolvimento (8-9 anos), período de desenvolvimento lento 2 (10 anos), o período de desenvolvimento rápido (11-12 anos) e período de estagnação do desenvolvimento (13-14 anos). Ao desenvolvimento cognitivo tem dois períodos importantes: os primeiros 8-9 anos de idade é um período importante, os estudantes dominar esta fase da aleatoriedade e quantidade de crescimento rápido; 11-12 anos de idade, é o segundo período importante de desenvolvimento. Ao nível mais alto de conceito de probabilidade os estudantes tem período de rápido desenvolvimento, no entanto, para a quantidade de cognitiva e distribuição aleatória atingiu apenas o nível de compreensão. Isto sugere que a os estudantes têm limitada cogniçao em probabilidade, e, por conseguinte, o currículo padrão para um posicionamento preciso.

  • Referencias bibliográficas
    • Amir, G. S., & Williams, J. S. (1999). Cultural influences on children’s probabilistic thinking. Journal of Mathematical Behavior, 18...
    • Australian Education Council. (1991). A national statement on mathematics for Australian schools. Carlton, VIC: Curriculum Corporation, Department...
    • Ausubel, D. I., Novak, J. D., & Hanesian, H. (1983). Psicología educativa. Un punto de vista cognoscitivo, Mexico: Trillas.
    • Batanero, C., & Serrano, L. (1999). The meaning of randomness for secondary students. Journal for Research in Mathematics Education, 30,...
    • Biggs J. B., & Collis K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy (pp. 17-35). New York: Academic Press.
    • Carpenter T P. (1981). What are the chances of your students knowing probability? The Mathematics Teacher, 74, 342-343.
    • Che, L. (2014). Research on learning process and characteristic representations about permutation and combination in the second grade primary...
    • Chernoff, E. J. (2008). The state of probability measurement in mathematics education: a first approximation. Philosophy of Mathematics Education...
    • Chernoff, E. J. (2009). Sample space partitions: an investigative lens. Journal of Mathematical Behavior, 28(1), 19-29.
    • Chernoff, E. J., & Zazkis, R. (2011). From personal to conventional probabilities: from sample set to sample space. Educational Studies...
    • China Ministry of Education. (2001). Mathematics Curriculum Standards for Compulsory Education (Experimental Edition). Beijing Normal University...
    • China Ministry of Education. (2011). Mathematics Curriculum Standards for Compulsory Education (2011 Edition). Beijing Normal University Press....
    • Copeland, R. W. Li, Q., & Kang, Q. (1985). How do children learn mathematics?. Shanghai: Shanghai Educational Publishing House.
    • Department of Education and Science and the Welsh Office. (1991). National curriculum: Mathematics for ages 5 to 16. York, UK: Central Office...
    • Engel, J., & Sedlmeier, P. (2005). On middle-school students’ comprehension of randomness and chance variability in data. Zentralblatt...
    • Fan, L. (2006). Mathematics (7th (semester 2)).. Zhejiang: Zhejiang Education Publishing House.[In Chinese].
    • Fan, L. (2010). Mathematics (9th (semester 2)). Zhejiang: Zhejiang Education Publishing House.[In Chinese].
    • Fischbein, E., & Gazit, A. (1984). Does the teaching of probability improve probabilistic intuitions? Educational Studies in Mathematics,...
    • Gal, I. (2005). Towards probability literacy for all citizens: Building blocks and instructional dilemmas. In G. A. Jones (Ed.), Exploring...
    • Gao, H. (2011). The understanding of probability concepts in 6-12 year old pupils. Master’s thesis.f Hangzhou Normal University, Hangzhou.[In...
    • Gong, Z. & Song, N. (2006). Teaching and learning of statistics and probability: reflections and suggestions. People’s Education, 10,...
    • Jones, G. A., Langrall, C. W., Thornton, C. A., & Mogill, A. T. (1999). Students’ probabilistic thinking in instruction. Journal for Research...
    • Jones, G. A., Langrall, C. W., Thornton, C. A., & Mogill, A. T. (1997). A framework for assessing and nurturing young children’s thinking...
    • Jones, G. A., Langrall, C. W., & Mooney, E. S. (2007). Research in probability: Responding to classroom realities. In F. K. Lester Jr....
    • Lagnado D. A. & Shanks D. R. (2003). The influence of hierarchy on probability judgment. Cognition, 89,157-178.
    • Li, J. (2002). Developmental structure in understanding of probability, Journal of Mathematics Education, 4, 1-5.[In Chinese].
    • Li, J. (2003). Learning and teaching of probability in primary and secondary schools. Shanghai: East China Normal University Press.[In Chinese].
    • Li, W., Zhang, H., & Shoo, H. (2014). Quantitative research methods and statistic analysis in education and psychology. Beijing, Beijing...
    • Lu, J., & Yang, G. (2009). Mathematics (3th (semester 1)).. Beijing, People’s Education Press. [In Chinese].
    • Lu, J., & Yang, G. (2010a). Mathematics (5th (semester 1)). Beijing, People’s Education Press. [In Chinese].
    • Lu, J., & Yang, G. (2010b). Mathematics (6th (semester 2)). Beijing, People’s Education Press. [In Chinese].
    • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
    • Nikiforidou, Z. & Pange, J. (2010). The notions of chance and probabilities in preschoolers. Early Childhood Education Journal, 38, 305-311.
    • Nilsson, P., & Li, J. (2015). Teaching and learning of probability. In. S. J. Cho (Ed.). The Proceedings of the 12th International Congress...
    • Piaget, J. & Inhelder, B. (1975). The origin of the idea of chance in children. New York: Norton.
    • Sharma, S. (2012). Cultural influences in probabilistic thinking. Journal of Mathematics Research, 4 (5), 63-77.
    • Shen, J., & Liu, F. (1984). Study on the cognition of volume for students aged 5-17. Acta Psychologica Sinica, 155-164. [In Chinese].
    • Wang, H. (2012). Study on elementary teachers’ probability knowledge. Master’s thesis Hangzhou Normal University, Hangzhou.[In Chinese].
    • Watson, J. D. & Moritz, J. B. (2003a). Fairness of dice: A longitudinal study of students’ beliefs and strategies for making judgments....
    • Watson, J. D. & Moritz, J. B. (2003b). The development of comprehension of chance language: evaluation and interpretation. School Science...
    • Watson, J. M., Collis, K. F., & Moritz, J. B. (1997). The development of chance measurement. Mathematics Education Research Journal, 9,...
    • Yan, B. (2007). A study of questions of statistics and probability in teaching in elementary mathematics. Master’s Thesis.Southwest University,...
    • Zhang, Z., Liu, F., Zhao, S., Sun, C., & Zuo, M. (1985). A study of the development of 5 to 15year-old’ concept of probability. Acta Psychologica...
    • Zhang, Z., Liu, Z., & Qiu, M. (1983). On the budding and developing of the cognitive structure for the notion of probability in children...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno