Ir al contenido

Documat


There is no evidence for order mattering; therefore, orderdoes not matter: An appeal to ignorance

  • Egan J., Chernoff [1] ; Gale, Russell [3] ; Ilona, Vashchyshyn [1] ; Heidi, Neufeld [1] ; Nat, Banting [2]
    1. [1] University of Saskatchewan

      University of Saskatchewan

      Canadá

    2. [2] University of Alberta

      University of Alberta

      Canadá

    3. [3] Univerity of Regina
  • Localización: Avances de investigación en educación matemática: AIEM, ISSN-e 2254-4313, Nº. 11, 2017, págs. 5-24
  • Idioma: inglés
  • DOI: 10.35763/aiem.v1i11.179
  • Títulos paralelos:
    • No hay evidencia para la importancia del orden; por tanto el orden no importa: Una apelación a la ignorancia
    • Não há evidência de que a ordem seja importante; por isso, a ordem não importa: Um apelo àignorância
    • Il n’y a pas d’évidence que l’ordre importe ; alors, l’ordre n’importe pas: Un appel àl’ignorancef
  • Enlaces
  • Resumen
    • español

      Dentro del limitado campo de investigación sobre el conocimiento probabilístico del profesor, las respuestas incorrectas, inconsistentes o incluso inexplicables se explican frecuentemente usando marcos teóricos basados en las heurísticas y el razonamiento informal. Más recientemente ha emergido nueva investigación basada en falacias lógicas, que se ha mostrado efectiva para explicar ciertas respuestas normativamente incorrectas a tareas probabilísticas. Este artículo contribuye a esta área emergente, mostrando como una particular falacia lógica conocida como “apelación a la ignorancia” es útil para explicar un conjuntode respuestas normativamente incorrectas de profesores de matemática de enseñanza primaria y secundaria en formación a una nueva tarea probabilística. También se sugiere que el foco sobre el enfoque clásico en la enseñanza de la probabilidad teórica contribuye al uso de esta falacia en particular.

    • English

      Within the limited field of research on teachers’probabilistic knowledge, incorrect, inconsistent and even inexplicable responses to probabilistic tasks are most often accounted for by utilizing theories, frameworks and modelsthatare based upon heuristic and informal reasoning. More recently, the emergence of new research based upon logical fallacies has been provingeffective in explainingcertain normatively incorrect responses to probabilistic tasks. This article contributes to this emerging area of research by demonstrating how a particular logicalfallacy, known as “an appeal to ignorance,”can be used to account for a specific set of normatively incorrect responsesprovided by prospective elementary and secondary mathematics teachersto a new probabilistic task.It is further suggested that afocus on the classical approach to teaching theoretical probability contributes to the use of this particular logical fallacy. e

    • français

      Dans le domaine limité de la recherche sur la connaissance des enseignants au sujet de la probabilité, des réponses incorrectes, inconsistantes et même inexplicables à des tâches probabilistes sont le plus souvent expliqués par le raisonnement heuristique et informel. Plus récemment, de nouvelles recherches basées sur les erreurs logiques se montrent efficaces pour expliquer certaines réponses incorrectes à des tâches probabilistes. Cet article contribue dans ce domaine de recherche émergente en démontrant comment une certaine erreur logique, connue sous le nom d’« appel à l’ignorance, » peut être utilisée pour expliquer un ensemble spécifique de réponses incorrectes fournies par de futurs enseignants du primaire et du secondaire à une nouvelle tâche probabiliste. On suggère aussi que l’accent mis sur l’approche classique d’enseigner la probabilité théorique contribuerait à l’emploi de cette erreur logique.

    • português

      No limitado campo de investigação sobre o conhecimento probabilístico dos professores, as respostas incorretas, inconsistentes e até mesmo inexplicáveis às tarefas probabilísticas são mais frequentemente explicadas pela utilização de teorias, estruturas e modelos baseados no raciocínio heurístico e informal. Mais recentemente, o surgimento de nova investigação baseada em falácias lógicas tem-se mostrado eficaz para explicar certas respostas normativamente incorretas a tarefas probabilísticas. Este artigo contribui para essa área emergente de investigação, demonstrando como uma falácia lógica particular, conhecida como "um apelo à ignorância", pode ser usada para explicar um conjunto específico de respostas normativamente incorretas dadas por futuros professores de matemática do ensino básico e secundário a uma nova tarefa de probabilidades. Sugere-se ainda que o foco na abordagem clássica para o ensino da probabilidade teórica contribui para o uso desta falácia lógica particular.

  • Referencias bibliográficas
    • Abrahamson, D. (2009). Orchestrating semiotic leaps from tacit to cultural quantitative reasoning-the case of anticipating experimental outcomes...
    • Batanero, C., Chernoff, E., Engel, J. Lee, H., & Sánchez, E. (2016). Research on Teaching and Learning Probability. ICME-13. Topical Survey...
    • Borovcnik, M. (2012). Multiple perspectives on the concept of conditional probability. Avances de Investigación en Educación Matemática 2,...
    • Chernoff, E. J. (2009a). Explicating the multivalence of a probability task. In S. L. Swars, D. W. Stinson, & S. Lemons-Smith (Eds.),...
    • Chernoff, E. J. (2009b). Sample space partitions: An investigative lens. Journal of Mathematical Behavior, 28(1), 19–29.
    • Chernoff, E. J. (2009c). The subjective-sample-space. In S. L. Swars, D. W. Stinson, & S. Lemons-Smith (Eds.), Proceedings of the Thirty-First...
    • Chernoff, E. J. (2011). Investigating relative likelihood comparisons of multinomial, contextual sequences. In D. Pratt (Ed.), Proceedings...
    • Chernoff, E. J. (2012a). Logically fallacious relative likelihood comparisons: The fallacy of composition. Experiments in Education, 40(4),...
    • Chernoff, E. J. (2012b). Providing answers to a question that was not asked. Proceedings of the Fifteenth Annual Conference of the Special...
    • Chernoff, E. J., & Russell, G. L. (2011a). An informal fallacy in teachers’ reasoning about probability. In L. R. Wiest & T. Lamberg...
    • Chernoff, E. J., & Russell, G. L. (2011b). An investigation of relative likelihood comparisons: the composition fallacy. In B. Ubuz (Ed.),...
    • Chernoff, E. J., & Russell, G. L. (2012a). The fallacy of composition: Prospective mathematics teachers’ use of logical fallacies. Canadian...
    • Chernoff, E. J., & Russell, G. L. (2012b). Why order does not matter: An appeal to ignorance. In Van Zoest, L. R., Lo, J. J., & Kratky,...
    • Chernoff, E. J., & Zazkis, R. (2010). A problem with the problem of points. In P. Brosnan, D. Erchick, & L. Flevares (Eds.), Proceedings...
    • Chernoff, E. J., & Zazkis, R. (2011). From personal to conventional probabilities: from sample set to sample space. Educational Studies...
    • Curtis, G. N. (2011). Fallacy files: Appeal to ignorance. Retrieved from http://www.fallacyfiles.org/ignorant.html.
    • Evans, J. S. B. T., & Pollard, P. (1981). Statistical judgment: A further test of the representativeness heuristic. Acta Psychologica,...
    • Gómez, E., Batanero, C., & Contreras, C. (2013). Conocimiento matemático de futuros profesores para la enseñanza de la probabilidad desde...
    • Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers'...
    • Jones, G. A., Langrall, C. W., & Mooney, E. S. (2007). Research in probability: Responding to classroom realties. In F. K. Lester, Jr....
    • Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus and Giroux.
    • Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representativeness. Cognitive Psychology, 3, 430–454.
    • Konold, C. (1989). Informal conceptions of probability. Cognition and Instruction, 6(1), 59– 98.
    • Konold, C., Pollatsek, A., Well, A., Lohmeier, J., & Lipson, A. (1993). Inconsistencies in students’ reasoning about probability. Journal...
    • Kunda, Z., & Nisbett, R. E. (1986). Prediction and partial understanding of the law of large numbers. Journal of Experimental Social Psychology,...
    • Lecoutre, M.-P. (1992). Cognitive models and problem spaces in “purely random” situations. Educational Studies in Mathematics, 23(6), 557–569.
    • Peirce, C. S. (1931). Principles of philosophy. In C. Hartshorne, & P. Weiss (Eds.), Collected papers of Charles Sanders Peirce (Vol....
    • Shaughnessy, J. M. (1977). Misconceptions of probability: An experiment with a small-group, activity-based, model building approach to introductory...
    • Shaughnessy, J. M. (1992). Research in probability and statistics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and...
    • Stohl, H. (2005). Probability in teacher education and development. In G. A. Jones (Ed.), Exploring probability in school: Challenges for...
    • Strauss & Corbin. (1998). Basics of qualitative research techniques and procedures for developing grounded theory (2nd ed.). London: Sage.
    • Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foundations of mathematics education. In O. Figueras,...
    • Tversky, A., & Kahneman, D. (1971). Belief in the law of small numbers. Psychological Bulletin, 76, 105–110.
    • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131. Von Glaserveld, E. (1995)....
    • Von Glaserveld, E. (1995). Radical constructivism: A way of knowing and learning. Florence, KY: Psychology Press.
    • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics...
    • Yackel, E., Rasmussen, C., & King, K. (2000). Social and sociomathematical norms in an advanced undergraduate mathematics course. Journal...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno