Mohanasundaram Radhakrishnan, S. Rajesh, Sushama Agrawal
In this paper, we prove that if $K$ is a nonempty weakly compact set in a Banach space $X$, $T:K\to K$ is a nonexpansive map satisfying $\frac{x+Tx}{2}\in K$ for all $x\in K$ and if $X$ is $3-$uniformly convex or $X$ has the Opial property, then $T$ has a fixed point in $K.$
© 2008-2024 Fundación Dialnet · Todos los derechos reservados