Ir al contenido

Documat


Some fixed point theorems on non-convex sets

  • Autores: Mohanasundaram Radhakrishnan, S. Rajesh, Sushama Agrawal
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 18, Nº. 2, 2017, págs. 377-390
  • Idioma: inglés
  • DOI: 10.4995/agt.2017.7452
  • Enlaces
  • Resumen
    • In this paper, we prove that if $K$ is a nonempty weakly compact set in a Banach space $X$, $T:K\to K$ is a nonexpansive map satisfying $\frac{x+Tx}{2}\in K$ for all $x\in K$ and if $X$ is $3-$uniformly convex or $X$ has the Opial property, then $T$ has a fixed point in $K.$

  • Referencias bibliográficas
    • J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, in Operator Theory:...
    • F. E. Browder, Nonexpansive nonlinear operations in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1043. https://doi.org/10.1073/pnas.54.4.1041
    • M. Edelstein, The construction of an asymptotic center with a fixed point property, Bull. Amer. Math. Soc. 78 (1972), 206-208. https://doi.org/10.1090/S0002-9904-1972-12918-5
    • K. Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Contemp. Math. 21 (1983), 115-123. https://doi.org/10.1090/conm/021/729507
    • K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., Cambridge Univ. Press, 1990. https://doi.org/10.1017/CBO9780511526152
    • K. Goebel and R. Schöneberg, Moons, bridges, birds and nonexpansive mappings in Hilbert space, Bull. Austral. Math. Soc. 17 (1977), 463-466....
    • J. P. Gossez and L. Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972),...
    • D. Göhde, Zum Prinzip der knontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258. https://doi.org/10.1002/mana.19650300312
    • A. R. Khan and N. Hussain, Iterative approximation of fixed points of nonexpansive maps, Sci. Math. Jpn. 4 (2001), 749-757.
    • W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72(1965), 1004-1006. https://doi.org/10.2307/2313345
    • W. A. Kirk, Nonexpansive mappings in product spaces, set-valued mappings and $k$-uniform rotundity, Proc. Sympos. Pure Math. 45 (1986), 51-64....
    • M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.) 10 (1955), 123-–127.
    • T. C. Lim, On moduli of $k-$convexity, Abstr. Appl. Anal. 4 (1999), 243-247. https://doi.org/10.1155/S1085337599000202
    • P. K. Lin, $k-$uniform rotundity is equivalent to $k-$uniform convexity, J. Math. Anal. Appl. 132 (1988), 349-355. https://doi.org/10.1016/0022-247X(88)90066-2
    • P. K. Lin, K. K. Tan and H. K. Xu, Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Analysis,...
    • Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597....
    • E. Sliverman, Definitions of Lebesgue area for surfaces in metric spaces, Rivista Mat. Univ. Parma 2 (1951), 47-76.
    • F. Sullivan, A generalization of uniformly rotund Banach spaces, Canad. J. Math. 31 (1979), 628-636. https://doi.org/10.4153/CJM-1979-063-9
    • T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088-1095....
    • P. Veeramani, On some fixed point theorems on uniformly convex Banach spaces, J. Math. Anal. Appl. 167 (1992), 160-166. https://doi.org/10.1016/0022-247X(92)90243-7

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno