Ir al contenido

Documat


Effects of numerical surface form in arithmetic word problems

  • Josetxu Orrantia [1] ; David Múñez [1] ; Sara San Romualdo [1] ; Lieven Verschaffel [2]
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

    2. [2] KU Leuven

      KU Leuven

      Arrondissement Leuven, Bélgica

  • Localización: Psicológica: Revista de metodología y psicología experimental, ISSN-e 1576-8597, ISSN 0211-2159, Vol. 36, Nº 2, 2015, págs. 265-281
  • Idioma: inglés
  • Títulos paralelos:
    • Efectos del formato numérico en problemas aritméticos
  • Enlaces
  • Resumen
    • español

      Los adultos calculan más eficazmente cuando los operandos se presentan en formato arábigo (3 + 5) que cuando se presentan en formato palabras numéricas (tres + cinco). Una explicación ofrecida es la mayor familiaridad visual de los dígitos relativo a las palabras numéricas. Sin embargo, la mayoría de los estudios se han limitado a operaciones simples de cálculo con sumas y multiplicaciones. En el presente trabajo analizamos hasta qué punto se produce el efecto del formato en el contexto de un problema aritmético, en el que la familiaridad visual se elimina (Manuel tenía 3 canicas y le dieron 5). Participantes con diferente nivel de competencia en fluidez aritmética resolvieron problemas de suma y resta con los operandos en ambos formatos. Los resultados mostraron un efecto del formato, con mayor rapidez en formato dígitos que en palabras numéricas. Además los efectos fueron más evidentes en la operación de resta y en los participantes menos competentes en fluidez aritmética. Estos resultados fueron interpretados en función de una mayor eficacia del formato dígitos para acceder a la semántica del número.

    • English

      Adults’ simple arithmetic performance is more efficient when operands are presented in Arabic digit (3 + 5) than in number word (three + five) formats.

      An explanation provided is that visual familiarity with digits is higher respect to number words. However, most studies have been limited to single-digit addition and multiplication problems. In this article, we examine to what extent format effects can be found in the context of arithmetic word problems, in which visual familiarity is reduced (Manuel had 3 marbles, and then Pedro gave to him 5). Participants with high and low arithmetic fluency solved addition and subtraction word problems in which operands were presented in both formats. The overall results showed an advantage for digits operands relative to words operands. In addition, the format effects were more evident for subtraction and low-skilled participants. These results were interpreted in terms of more rapid access of digits to numerical magnitude.

  • Referencias bibliográficas
    • Ashcraft, M. H. (1982). The development of mental arithmetic: A chronometric approach. Developmental Review, 2, 213–236.
    • Ashcraft, M. H. (1987). Children’s knowledge of simple arithmetic: A developmental model and simulation. In J. Bisanz, C. J. Brainerd, &...
    • Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44, 75–106.
    • Ashcraft, M. H., & Guillaume, M. M. (2009). Mathematical cognition and the problem size effect. Psychology of Learning and Motivation,...
    • Campbell, J. I. D. (1992). In defense of the encoding-complex approach: Reply to McCloskey, Macaruso, & Whetstone. In J. I. D. Campbell...
    • Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition, 53, 1–44.
    • Campbell, J. I. D. (1999). The surface form x problem size interaction in cognitive arithmetic: evidence against an encoding locus. Cognition,...
    • Campbell, J. I. D., & Alberts, N. A. (2009). Operation-specific effects of numerical surface form on elementary calculation. Journal of...
    • Campbell, J. I. D., & Clark, J. M. (1988). An encoding complex view of cognitive number processing: Comment on McCloskey, Sokol, and Goodman...
    • Campbell, J. I. D., & Clark, J. M. (1992). Cognitive number processing: An encodingcomplex perspective. In J. I. D. Campbell (Ed.), The...
    • Campbell, J. I. D., & Epp, L. J. (2005). Architectures for arithmetic. In J. I. D. Campbell (Ed.), The handbook of mathematical cognition...
    • Campbell, J. I. D., & Fugelsang, J. (2001). Strategy choice for arithmetic verification: Effects of numerical surface form. Cognition,...
    • Campbell, J. I. D., & Graham, D. J. (1985). Mental multiplication skill: Structure, process, and acquisition. Canadian Journal of Psychology,...
    • Campbell, J. I. D., Kanz, C. L., & Xue, Q. (1999). Number processing in Chinese–English bilinguals. Mathematical Cognition, 5, 1–39.
    • Campbell, J. I. D., & Metcalfe, W. S. (2009). Numerical abstractness and elementary arithmetic. Commentary to Cohen Kadosh & Walsh:...
    • Campbell, J. I. D., Parker, H. R., & Doetzel, N. L. (2004). Interactive effects of numerical surface form and operand parity in cognitive...
    • Campbell, J. I. D., & Penner-Wilger, M. (2006). Calculation latency: The mu of memory and the tau of transformation. Memory & Cognition,...
    • Campbell, J. I. D., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130, 299–315.
    • Castronovo, J., & Göbel, S. M. (2012). Impact of high mathematics education on the number sense. Plos One, 7, e33832.
    • Cohen Kadosh, R. (2008) Numerical representation: Abstract or non-abstract? The Quarterly Journal of Experimental Psychology 61, 1160–1168.
    • Cohen Kadosh, R., Henik, A. & Rubinsten, O. (2008) Are Arabic and verbal numbers processed in different ways? Journal of Experimental...
    • Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral and Brian Sciences,...
    • Colomé, A., Bafalluy, M. G., & Noël, M.-P. (2011). Getting to the source: a questionnaire on the learning and use of arithmetical operations....
    • Damian, M. F. (2004). Asymmetries in the processing of Arabic digits and number words. Memory & Cognition, 32, 164–171.
    • De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences...
    • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.
    • Dehaene S (1997) The number sense. Oxford: Oxford University Press.
    • Dehaene, S. (2001). Précis of the number sense. Mind & Language, 16, 16-36.
    • Dehaene, S., & Akhavein, R. (1995) Attention, automaticity, and levels of representation in number processing. Journal of Experimental...
    • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology:...
    • Dehaene, S., & Cohen, L. (1995). Toward an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.
    • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20,...
    • Fayol, M., & Thevenot, C. (2012). The use of procedural knowledge in simple addition and subtraction problems. Cognition, 123, 392-403.
    • Hamann, M. S., & Ashcraft, M. H. (1986). Textbook presentations of the basic addition facts. Cognition and Instruction, 3, 173–192.
    • Hecht, S. A. (1999). Individual solution processes while solving addition and multiplication math facts in adults. Memory & Cognition,...
    • Herrera, A., & Macizo, P. (2012). Semantic processing in the production of numerals across notations. Journal of Experimental Psychology:...
    • Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences...
    • Jackson, N., & Coney, J. (2007a). Simple arithmetic processing: Surface form effects in a priming task. Acta Psychologica 125, 1–19.
    • Jackson, N., & Coney, J. (2007b). Simple arithmetic processing: Individual differences in automaticity. European Journal of Cognitive...
    • Kirk, E. P., & Ashcraft, M. K. (2001). Telling stories: The perils and promise of using verbal reports to study math strategies. Journal...
    • LeFevre, J.-A., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L., & Sadesky, G. S. (1996). Multiple routes to solution of single-digit...
    • LeFevre, J.-A., DeStefano, D., Penner-Wilger, M., & Daley, K. E. (2006). Selection of procedures in mental subtraction. Canadian Journal...
    • LeFevre, J.-A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem size effect in...
    • Lyons, I. M., & Beilock, S. L. (2011) Numerical ordering ability mediates the relation between number-sense and arithmetic competence....
    • McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia. Cognition, 44, 107–157.
    • McCloskey, M., & Macaruso, P. (1995). Representing and using numerical information. American Psychologist, 50, 351–363.
    • McCloskey, M., Macaruso, P., & Whetstone, T. (1992). The functional architecture of numerical processing mechanisms: defending the modular...
    • Moyer, R. S., Landauer, T. K. (1967) Time required for judgements of numerical inequality. Nature, 215, 1519–1520.
    • Naccache, L. & Dehaene, S. (2001). Unconscious semantic priming extends to novel unseen stimuli. Cognition 80, 223–237.
    • Noël, M.-P., Fias, W., & Brysbaert, M. (1997). About the influence of the presentation format on arithmetical-fact retrieval processes....
    • Orrantia J., & Múñez D. (2013). Arithmetic word problem solving: Evidence for a magnitude-based mental representation. Memory & Cognition....
    • Orrantia J., Múñez D., Vicente, S., Verschaffel, L., & Rosales, J. (2014). Processing of situational information in story problem texts....
    • Orrantia, J., Rodríguez, L., Múñez, D., & Vicente, S. (2012). Inverse reference in subtraction performance: An analysis from arithmetic...
    • Orrantia, J., Rodríguez, L., & Vicente, S. (2010). Automatic activation of addition facts in arithmetic word problems. The Quarterly Journal...
    • Riley, N. S., Greeno, J., & Heller, J. I. (1983). Development of children’s problem solving ability in arithmetic. In H. P. Ginsburg (Ed.),...
    • Sasanguie, D., & Reynvoet, B. (2014). Adults’ arithmetic builds on fast and automatic processing of Arabic digits: Evidence from an audiovisual...
    • Schwarz, W. & Ischebeck, A. (2000) Sequential effects in number comparison. Journal of Experimental Psychology: Human Perception and Performance,...
    • Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003). Elementary subtraction. Journal of Experimental Psychology: Learning, Memory and...
    • Siegler, R. S., & Jenkins, E. (1989). How children discover new strategies. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
    • Siegler, R. S., & Shipley, E. (1995). Variation, selection, and cognitive change. In G. Halford & T. Simon (Eds.), Developing cognitive...
    • Sokol, S. M., McCloskey, M., Cohen, N. J., & Aliminosa, D. (1991). Cognitive representations and processes in arithmetic: Inferences from...
    • Thevenot, C., Castel, C., Fanget, M., & Fayol, M. (2010). Mental subtraction in high and lower-skilled arithmetic problem solvers: Verbal...
    • Thevenot, C., Fanget, M., & Fayol, M. (2007). Retrieval or non-retrieval strategies in mental arithmetic? An operand-recognition paradigm....
    • Vanbinst, K., Ghesquière, P., & De Smedt, B. (2012). Numerical magnitude representations and individual differences in children’s arithmetic...
    • Zbrodoff, N. J., & Logan, G. D. (2005). What everyone finds: The problem size effect. In J. I. D. Campbell (Ed.), Handbook of mathematical...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno