Ir al contenido

Documat


El buen planteamiento y el cálculo de soluciones de un sistema regularizado de Benjamin-Ono

  • Pipicano, Felipe Alexander [1] ; Muñoz Grajales, Juan Carlos [1]
    1. [1] Universidad del Valle
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 34, Nº. 1, 2016 (Ejemplar dedicado a: Revista Integración), págs. 59-80
  • Idioma: español
  • DOI: 10.18273/revint.v34n1-2016004
  • Títulos paralelos:
    • Well-posedness and computation of solutions of a regularized Benjamin-Ono system
  • Enlaces
  • Resumen
    • español

      En este artículo se estudia la existencia y la unicidad de soluciones del problema de Cauchy, en el caso periódico, para un sistema de tipo Benjamin-Ono regularizado (rBO), usando teoría de semigrupos, análisis de Fourier y el Teorema del punto fijo de Banach. Este sistema fue deducido recientemente por Muñoz [12] como un modelo débilmente dispersivo para la propagación de ondas internas con pequeña amplitud en la interface de dos fluidos inmiscibles con densidades constantes. Además se realizan algunos experimentos numéricos para analizar el error y la convergencia en tiempo y espacio de un esquema espectral de Fourier completamente discreto, a fin de aproximar las soluciones del problema de valor inicial asociado con el sistema rBO.

    • English

      This article is concerned with the existence and uniquenessof solutions of the Cauchy problem in the periodic setting for a regularized Benjamin-Ono type system (rBO) by using semigroup theory, Fourier analysis and Banach’s fixed point theorem. This system was recently derived by Muñoz [12] as a weakly dispersive model for the propagation of small amplitude internal waves at the interface of two immiscible fluids with constant densities. We also conduct some numerical experiments to analyze the error and convergence in time and space of a fully discrete Fourierspectral scheme, for approximating the solutions of the initial value problem associated to the rBO system.

  • Referencias bibliográficas
    • Citas [1] Benjamin T.B., Bona J.L. and Bose D.K., “Solitary-wave solutions of nonlinear problems”, Philos. Trans. Roy. Soc. London Ser....
    • [2] Bona J.L., Lannes D. and Saut J.C, “Asymptotic models for internal waves”, J. Math. Pures Appl. (9) 89 (2008), No. 6, 538–566.
    • [3] Butzer P.L. and Nessel R.J., Fourier analysis and approximation. Volume 1: Onedimensional theory, Pure and Applied Mathematics, Vol. 40,...
    • [4] Chen H., “Existence of periodic travelling-wave solutions of nonlinear, dispersive wave equations”, Nonlinearity 17 (2004), No. 6, 2041–2056.
    • [5] Choi W. and Camassa R., “Fully nonlinear internal waves in a two-fluid system”, J. Fluid. Mech. 396 (1999), 1–36.
    • [6] Choi W. and Camassa R., “Long internal waves of finite amplitude”, Phys. Rev. Lett. 77 (1996), No. 9, 1759–1762.
    • [7] Choi W. and Camassa R., “Weakly nonlinear internal waves in a two-fluid system”, J. Fluid Mech. 313 (1996), 83–103.
    • [8] Duoandikoetxea J., Fourier analysis, Graduate Studies in Mathematics 29, American Mathematical Society, Providence, RI, 2001.
    • [9] Granas A., “The Leray-Shauder index and the fixed point theory for arbitrary ANRs”, Bull. Soc. Math. France 100 (1972), 209–228.
    • [10] Krasnosel’skii M.A., Positive solutions of operator equations, P. Noordhoff Ltd.Groningen, 1964.
    • [11] Krasnosel’skii M.A., Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book, The Macmillan Co., New...
    • [12] Muñoz Grajales J.C., “Existence and numerical approximation of solutions of an improved internal wave model”, Math. Model. Anal. 19 (2014),...
    • [13] Pazy A., Semigroups of linear operators and application to partial differential equations, Applied Mathematical Sciences 44, Springer-Verlag,...
    • [14] Pipicano F.A. and Muñoz Grajales J.C., “Existence of periodic travelling wave solutions for a regularized Benjamin-Ono system”, J. Differential...
    • [15] Quintero J. and Muñoz Grajales J.C., “Solitary waves for an internal wave model”,submitted to Discrete Contin. Dyn. Syst., 2015.
    • [16] Roumégoux D., “A symplectic non-squeezing theorem for BBM equation”, Dyn. Partial Differ. Equ. 7 (2010), No. 4, 289–305.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno