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Abstract. This article is concerned with the existence and uniqueness of
solutions of the Cauchy problem in the periodic setting for a regularized
Benjamin-Ono type system (rBO) by using semigroup theory, Fourier analy-
sis and Banach’s fixed point theorem. This system was recently derived by
Munoz [12]| as a weakly dispersive model for the propagation of small am-
plitude internal waves at the interface of two immiscible fluids with constant
densities. We also conduct some numerical experiments to analyze the error
and convergence in time and space of a fully discrete Fourier spectral scheme,
for approximating the solutions of the initial value problem associated to the
rBO system.
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El buen planteamiento y el calculo de soluciones
de un sistema regularizado de Benjamin-Ono

Resumen. En este articulo se estudia la existencia y la unicidad de solucio-
nes del problema de Cauchy, en el caso periddico, para un sistema de tipo
Benjamin-Ono regularizado (rBO), usando teorfa de semigrupos, analisis de
Fourier y el Teorema del punto fijo de Banach. Este sistema fue deducido
recientemente por Munoz [12] como un modelo débilmente dispersivo para la
propagacion de ondas internas con pequena amplitud en la interface de dos
fluidos inmiscibles con densidades constantes. Ademas se realizan algunos ex-
perimentos numéricos para analizar el error y la convergencia en tiempo y
espacio de un esquema espectral de Fourier completamente discreto, a fin de
aproximar las soluciones del problema de valor inicial asociado con el sistema
rBO.
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60 F.A. Prricano & J.C. MuNoz GRAJALES

1. Introduction

In this paper we will consider the nonlinear integro-differential system written in dimen-

sionless variables )

(t - ((1 - aC)U)T = %fmm
P 2 (1)

U + quiy — pCy = —eH(Ugt) + —Usat,
p1 6

under the initial conditions
C(z,0) = Co(x) and wu(z,0) =wup(x),
and periodic boundary conditions
C(z,t) =Cle+ L,t) and  wu(x,t) =u(x+ L,t),

where L > 0 is a positive constant. The symbol H denotes the periodic Hilbert Transform

defined by
L2 o
Hf(x) = % p.v./_L/2 cot(@)f(f)df,

where the expression p.v. / stands for the integration in the principal value sense. We

refer the reader to the works by Duoandikoetxea [8] and Butzer and Nesser [3] for more
information about the Hilbert Transform. In particular, the following property of this
linear operator is important in the present paper:

H(e™™™) =i sign(k)e™™, ke Z, (2)
where
-1, k<O,
sign(k) =<0, k=0,
1, k>o0.

The system above was deduced by Munoz [12] and it describes the propagation of a
weakly nonlinear (o« << 1) internal wave propagating at the interface of two immiscible
fluids with constant densities, which are contained at rest in a long channel (e << 1)
with a horizontal rigid top and bottom, and the thickness of the lower layer is assumed
to be effectively infinite, i.e., ho >> hy (deep water limit). In Figure 1, we sketch the
physical setting of the problem. In system (1), the constant p is given by ﬁ—f —1, where p;
and po represent the densities of the fluids and py/p1 > 1 (for stable stratification). The
constants « and € are small positive real numbers that measure the intensity of nonlinear

a h
and dispersive effects, respectively, a = W and € = fl, where hy denotes the thickness

of the upper fluid layer and the parametlers L and a correspond to the characteristic
wavelength and characteristic wave amplitude, respectively. The dimensionless variable
x represents the spatial position and ¢ the propagation time. The function u = u(z,t) is
the velocity monitored at the normalized depth z = 1— m, and ¢ = ((z,t) is the wave
amplitude at the point z and time ¢, measured with respect to the rest level of the two-
fluid interface. The phenomenon of propagation of waves on the interface between two
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Well-posedness and computation of solutions of a regularized Benjamin-Ono system 61

layers of immiscible fluids of different densities is attracting the interest of many physi-
cians and mathematicians, for both well-posedness theory and asymptotic theory, due
to the challenging modelling and mathematical and numerical difficulties involved in the
analysis of this physical system. Previous mathematical models for describing physically
different scaling regimes of this phenomenon are those by Choi and Camassa [5], [6], [7].
On the other hand, Bona et al. [2] proposed a general method to derive systematically
different weakly-dispersive, weakly nonlinear asymptotic models for the propagation of
internal waves at a two-fluid interface. The system of variables used in [2] further enable
the establishment of analytical results on consistency and convergence of the approximate
models to the full Euler equations for an ideal, incompressible, irrotational fluid.

Solid wall

z p1 hy
(=, t)
N
£7 . Interface
2l

P2 ho

Solid wall

Figure 1. A typical periodic internal wave propagating at the interface of the two-fluid system which
are contained at rest in a long channel with a horizontal rigid top and bottom.

In [12], Muifloz also established the existence and uniqueness of solutions in the non-
periodic case, and formulated a spectral scheme for approximating solutions of the corres-
ponding Cauchy problem. Pipicano and Mufioz in [14] studied the existence of periodic
travelling wave solutions of system (1) by using the topological-degree theory of positive
operators on Banach spaces earlier developed in the works by Krasnosel’skii and Granas
[10], [11],]9]. The technique used in [14] was inspired by Benjamin et al. [1] on solitary
wave solutions of the Korteweg-de Vries (KdV) equation and Chen [4] in the framework
of periodic travelling wave solutions. Quintero and Munoz [15] also studied existence of
non periodic travelling waves (solitary waves) of system (1) by adapting the theory on
positive operators on cones applied in [1] to the KdV equation.

In order to continue the study on the properties of system (1), the first objective of the
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62 F.A. Prricano & J.C. MuNoz GRAJALES

present paper is to show that system (1) is locally well posed in the product periodic
Sobolev space Hp,, x H,.,, provided that s > 0, by using semigroup theory and the
Banach fixed point principle. This theory can be used to solve a wide class of problems
commonly known as evolution equations that arise in many areas of application such
as physics, chemistry, biology, engineering and economics, among others. Existence and
uniqueness of system (1) is necessary in order to study, in a future research, the stability

of travelling wave solutions of system (1).

The second purpose of this paper is to conduct some numerical experiments to analyze
the accuracy of the fully discrete solver, introduced by Muiioz in [12], for approximating
solutions of system (1) in both the linear and nonlinear cases on a spatial periodic domain.
In [12] was only considered the error of the corresponding semi-discrete formulation. It
is important to notice that the presence of the nonlocal dispersive operator H in system
(1) makes the numerical investigation harder than the study of equations with only local
terms. In this numerical method, the system is discretized in space by the Fourier spectral
method and in time by a second-order accurate scheme. A potential application of this
numerical tool is to explore the admissible range of velocity to guarantee the existence of
solitary waves of the system and to establish whether they are orbitally stable/unstable
under small disturbances.

The paper is organized as follows. In Section 2, we introduce notation, definitions and
results necessary for the theory developed in the paper. In Section 3, we establish the
local well-posedness of system (1) in the periodic case by using semigroup theory and
Banach’s fixed point theorem. Finally in Section 4, we present the numerical results
obtained with a scheme which uses spectral discretization in space and a second-order
finite difference approximation for time stepping of the initial value problem associated
to system (1).

2. Preliminaries

Throughout this paper we will work with L-periodic functions, where L is a positive real
number. The symbol K will denote a positive constant that is updated according to the
context.

Let N,Z,R and C be the sets of naturals, integers, reals and complex numbers, respec-
tively. We will denote by L?(0, L) = L? the Banach space of the all Lebesgue-measurable
functions on C which are 2-integrable on [0, L]. The usual norm defined on L? is

L
1l = ( / f<x>|2dx>

L
(f.q) = / f@)g@)ds

1/2

Additionally,

is an inner product in L? and || f||;. = (f, f>1/2.

Let Cg (0, L) =C* k=0,1,2,... be the space of all k times continuously-differentiable

e per>?

functions (or class C*) of period L. Further, Cper = Cper(0,L) = Cp,,.(0, L) is the space
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Well-posedness and computation of solutions of a regularized Benjamin-Ono system 63

of all continuous functions that are L-periodic and Cge, = C52,.(0, L) = N, Ck.,.. We will
denote by P the space of all functions ¢ : R — C of class C'*°, that are L-periodic. We
say that T : P — C defines a periodic distribution, i.e., T' € P’, if T is linear and there

exist a sequence (¥,,),en C P such that
L
1(0)= lm [ W@ VoeP.
n oo 0

Let s € R. The Sobolev space, denoted by H,, = H;,,.(0, L), is defined as

er

n=-—00

> -2
H;,, = {f eP = 3 @y |f)| < oo} ,
where f: 7 — C represents the coefficient of the Fourier Transform of f define by

f(n) _ % <f7€—2m'nz/L> )

If f € Cper, f(n) can be written as

- 1 L )
f(n) = Z/ f(xye~2mme/Lay ez
0

We recall that for s > 1/2, the space Hp,,. is an algebra, i.e., [|fgll, < K| f|, gl

We will denote by X5 the product space Hp,,. X Hp.,.. It is easy to show that the expression

per

1Y L, = (SIS + flull?)*?

defines a norm in X, with Y = (¢,u)”. Sometimes we will also use the equivalent norm

Y]

v, = ¢l + Tl -

Finally, we recall some definitions about semigroup theory. Let X be a Banach space. A
one parameter family (7 (¢));>o of bounded linear operators from X into X is a semigroup
of bounded linear operators on X if

i. 7(0) =1, (I is the identity operator on X);

i. T(t+s)=TH)T(s), Vi, s > 0 (the semigroup property).
The linear operator A defined by

Ar — lim Tz —x

t—0+ t

with domain

D(A) = {SC eX: thm % exists} ,

—0+
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64 F.A. Piricano & J.C. MuNoz GRAJALES

is called the infinitesimal generator of the semigroup 7(¢). A semigroup (7 (t))¢>0 of
bounded linear operators on X is called a Cy semigroup if

lim T(t)z ==z Vo € X.

t—0+

If Cy is a semigroup, D(A) is dense on X. We refer the reader to [13] for a detailed
information about semigroups of bounded linear operators.

3. Existence and uniqueness

In this section we will investigate the local well-posedness for the regularized Benjamin-
Ono system
2
€
Ct - ((1 - CYC)U)I = ECa:wu
P &2 (3)
g + Quy — ply = ;€H(7th) + G Yzt
1

where p = 22 — 1, under the initial conditions

P1
C(x,0) =(o(x) and  wu(z,0) = ug(x),
and periodic boundary conditions

C(z,t) =C(x+ L,t) and wu(z,t) =u(z+ L,t).

The system in (3) can be written as
G\ 0 ATID\ (¢ N 0 A~'D fz—i]uz
us) — \pB7'D 0 u pB™1D 0 —acu )’

€2 €2 P2
D =0,, A= (I — —8m) and B= (I — — gy — —e?—t@m) .
6 6 1

where

If we denote

}ﬁ%:68>7 A:(Mﬁq)A;D) and nm:(iif)

we conclude that Y formally must satisfy the following initial value problem:
Y =AY)+ AF(Y),
4
Y(0) = Yo = (co) (4)

Uo

Remark 3.1. The operators A, B : H3,, — H3_? are linear and bounded. In fact, let

¢ € Hp,, and let us denote w,, = %’T" Observe that

2,272
lA¢l2_, =Y (1 +n?) [1 + T‘”} [6al” < K D1+ 02)[6ul” = K [0

n
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Well-posedness and computation of solutions of a regularized Benjamin-Ono system 65

and

_ w? €lwy,
oIy = Yty [ Cub ool e £yl = Kol

n

Let us define the operators A~', B~ : H5-2 — H?

per per

—1 zwnz —1 Wy T
¢ = g 62w2 and ¢ = E —Ezw% N acfwn] € .

Note that the operators A~' and B~! are also linear and bounded. It follows that the
operator A : X;_1 — X is linear and bounded. In fact, the explicit form of A is

.A (<) _ Z (Zo—nun> eiwnac7
w) = 2\,

where
op = and Yn=—"—"535"—"—""
n e2w? no ew? paelwn]
1+ = 1+ S 4 c2citnl

For our purposes, in this article, we consider the operator A from X into X, s > 0.

3.1. Linear problem

In this part, we consider the linear case of system (4):

{aty = A(Y),

Yo v (5)

To construct the linear semigroup of operators, for s > 0, we consider the expansions
)= G)e™ ™ and  u(wt) =Y un(t)e" (6)
n n

By replacing the expressions of (6) into (5) we obtain

oG =N " uy (t)ione™n,
n n

DB = Calt)imme™
n n

Therefore, for each n € Z we have the system

Cn(t) = ionun(t),
uil(t) = iVnCn (t)v

under the initial conditions

Cn(0) = Con and un(0) = u, .
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66 F.A. Piricano & J.C. MuNoz GRAJALES

A direct calculation shows that the explicit solutions of this system are given by

Cn(t) = Coin €08 (\/Tnnt) + il o n sin (\/TnAnt) ,

un(t) = Up,n COS (\/ O'nf)/nt> + iGnCO,n sin (\/Un’}/nt) )

for n # 0, and
Go(t) = Co,0 and up(t) = uo.o-

. On 1
Iy, =sign(vn)/ —, ©n,=—, n#0,
gn(y ),/% o "7

'y = ©p = 0, where sign(x) denotes the sign function of x. Here we used the property
of the Hilbert Transform given in (2).

Let us define for ¢ > 0 and

- (-l

n

Here

the family of linear operators
_ C’ﬂ Wn T <0
TH) = ;)Mn(t) (u )

where
M (t) _ Ccos (\ /O'n’ynt) ’LFn sin (\/ Un’Ynt)
n - Z@n sin ( /o-nfynt) CcOS (1 /O'n’}/nt) .

Note that if Y = <1§) is an element of X, s > 0, then

ITOYI,
= 31+ 12)* |G cos (VFant) + Tty sin (yamt) + 6ol
n#0
+ Z(l +12)® |ty €08 (\/TpAnt) + iOnCp sin (/a1 t)|” + |uol?
n#0
<Y @+ K (16l + [unl?) + [Col* + Y (1 + 1)K (16al? + [unl?) + |uo|?
n#0 n#0

2
X

<K (IS +1C2) = K1Y
since
|G €08 (y/Tnnt) + il sin (v ynt)|> < K (1Ga]? + |unl?)
[un cos (V@nAnt) + 100G sin (vom7mt) | < K (Gl + funl*)
and due to the terms I';, and ©,, are controlled by a constant. Thus,
ITOY [y, < K[V, (9)
Therefore (7 (t));>0 is well defined from X into X;, s > 0.

(®)
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Theorem 3.2. The family (T (t))i>0 is a Co-semigroup of linear and bounded operators
m Xs.

Proof. A direct calculation shows that (7 ());>0 is a family of linear operators and each
T (t) is bounded due to (9).

Note that
- () (4)

n#0

Thus, 7(0) = I. The semigroup property 7 (¢t + s) = T(t)T (s), is a consequence of the
equality:
Mn(t + 8) = M"(t)M”L(S)'

Hence, (7 (t)):>0 is a semigroup of linear and bounded operators on Xj.

On the other hand, let Y = (i) be an element in Xs. Then

HT(t)Y - YHEQ = Z(l + n2)s |Cn (COS (\/ Un'Ynt) - 1) + ', sin (\/ Un’Ynt)|2

n#0
+ Z (14 12)° [un (€08 (\/Tnmt) — 1) 4+ iOpCn sin (Vanmt)|” .
n#0

Note that the series at the right side above converge uniformly in ¢ > 0 with upper
bounds similar to (8). Thus, as a consequence of the dominated convergence theorem for
sums, we have

lim |[T(H)Y - Y%
t—0t s

= Z hm (1 4+ n?)* ¢ (cos (v/onynt) — 1) + iTpuy, sin (\/Unfynt)\2

n;éO
+3° lim (1+ n2)* [uy, (cos (v/TnAmt) — 1) 4 i0,Cp sin (v/apmt)|”
t—
n#0
=0+0=0.
Thus lim;_,o+ 7 (t)Y =Y. This shows that (7 (¢))¢>0 is a Ch-semigroup. v

Theorem 3.3. The linear operator A : Xs — Xs, with s > 0, is the infinitesimal generator
of the semigroup (T (t))i>0-

Proof. Note that

| o) v - am)

Xs

- cos(\/mt C 4il, qm(\/mt Uy, — IO Un
n#0 " i'V"C"

cos(/o t)— sin ‘/cr t)
( ﬂ’yn UL+Z®7L ( t"’Yﬁ CL

s
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68 F.A. Piricano & J.C. MuNoz GRAJALES

Note that the terms

cos(y/TnYnt) — 1
t

sin(y/onynt
( tnfyn ) ) Frn 6”7 and VOnTn

I

are controlled by a constant. This implies that

. 2
cos(y/Tnnt) — 1 . sin({/o,Ynt )
%Cﬂ + Zl—‘n%un —ioply| < IC'Cnl2

and )
cos(/opYnt) — 1 sin(y/onynt
I L, 4 i, VI | < b

Therefore, the dominated convergence theorem for sums implies that

lim
t—0+

LITO) - Y] - AY)

Xs
. cos(\/Tnynt)—1 . sin(y/0nYnt .
_ lim; o+ (+,’Y)Cn + ZH%% — i0nUnp
- cos(y/TnAnt)—1 .~ sin(y/Taynt)
n#0 1 Up, + 110, [’ Cn

lim; g+ — 1YnCn

s

=0.

Therefore A(Y) = lim;_, o+ (%) (V) for any Y € X, which proves that the operator
A is the infinitesimal generator of the semigroup (7 (¢)):>0. v

3.2. Nonlinear problem

In this part, we study the existence, uniqueness and behavior of the solutions for the
problem (4), under changes of the initial data.

Lemma 3.4. Let L, = A"'D and Lo = B™'D, u € H;e
0<7" <s5,0<2s—r—r"<1/4. Then,

andvGH;; with 0 < r < s,

T T

1£1(uo)llm,, < Crrsllullmy, M0l ay

and
H/-"Q(“U)HH;ET < CT,T’A,SHUHH;””UHH;;TJ

where C,., s is a constant depending on 7,1, s.

Proof. Let us observe that

Lru(k) = —="_a(k),
1 + 5 n
_ iwn N
Lou(k) = (k),
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Well-posedness and computation of solutions of a regularized Benjamin-Ono system 69

and )
s S
+
fiwa|  _ Clnl
1+ SOy o2y, | — 1+
6 p1
Therefore, the proof is analogous to Lemma 3.1 in [16]. v

Lemma 3.5. IfY,Y < C([0,T], X,) with s > 0, then, for Y = (¢,u)” and Y = ((,@)"
we have

[A(F(Y) = F(Y))

w, SNY =Y, LClull, Il €], (10)

where L is a linear polynomial depending on |[ul|,, |[ull, and HZHq

Proof. First of all, suppose that s > % Since Hp,, is an algebra for s > 1 /2, we have

|AF(Y) - F(Y))| X <K |F(Y) - F(?)HXS

= K lJu* =@ + [[¢u - Ca ]

<K (llu=all, lu+all, +[|¢ =<, e +all, + 1€l lu—all, + ull, [|< = <],)
<K (e =3l [lull, + N2l + 1<)+ (1< =<, ull, + 11l))

< L(llull, @l (KUY =Y, »

where L(||ull,, [l [[<]|,) = K (lull, + Il + [C]l,)-

On the other hand, we recall that

0 A7'D
A= (pB*ID 0 ) '
Thus, for 0 < s < 1, we can apply Lemma 3.4 with r = 375 < s, 1" = s, to get again the

inequality (10). 4

Theorem 3.6. If Y € C([0,T]; Xs) with s > 0 is a solution of (4), then'Y satisfies the
integral equation

Y(t) = T(6)Y + / Tt - ©)AF(Y (£))de. (11)

Analogously, if Y € C([0,T); Xs), s > 0, is a solution of (11), then Y € C1([0,T]; Xs)

and satisfies (4) in the following sense:

Y(t+h)-Y(t)
h

lim

h—0*+

CAY (D) - AR(Y ()| =o.

X,

Proof. Let Y(t) € C(]0,T7]; X;) be a solution of the IVP (4). Then, for 0 < & < ¢ we have

Tt =Y () =Tt - ANV () + Tt - AFY(S)).
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70 F.A. Piricano & J.C. MuNoz GRAJALES

Note that p
€ (Tt =Y (&) =Tt—-Y'(€) = Tt —&AY ()

Thus,

d
& (Tt =Y (&) =T(t - HAF(Y(£)) (12)
Integrating on both sides of the equation (12), we obtain that Y satisfies the integral
equation

Y() = T(H)Yo + / T(t — ) AF(Y(£))de.

On the other hand, suppose that Y (¢) € C([0,T]; Xs) is a solution of the integral equation
(11). Consider the expression

.- HY(t+h) - Y(¢)

Y0 v - AF(Y(t))H . (13)

Xs

Replacing the expression (11) into (13) and applying the triangle inequality, we obtain

r< HT(t) (T(h;_ I> Yo — T(H)A(YD)
X
[T -] [ T - O AR(Y (©))de )
+ % tt+h Tt+h—8AF(Y(£))dE — AF(Y (t))
Note that
tim. HT(t) (P9 =1) v - 7a0a) -0
Jim, {% - A} /O T - AR (Y (©)de =0

The last term can be controlled by using the mean value theorem in the following way:

t+h

L T - AR (©)de — AF(Y (1)

v (14)

X

1 t+h
=% / IT(t+h = AF(Y (€)) — AF(Y (1)), d€
= |7+ n-HaFrE) - AF(Y(’J‘))HXS

< |7+ n-a[Fr @) - o) X | [T n-o-tarva|, .
(15)
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Well-posedness and computation of solutions of a regularized Benjamin-Ono system 71

for some ¢ < € < t 4+ h. Observe that the last term in (15) satisfies

Jlim H[ (t+h—§) — ]AF(Y(t))‘

=0,
Xs

since h — 07 implies é — 0F. Furthermore, by using Lemma 3.5, we have that the first
term in (15) can be bounded as

[Tt +h - A [P (@) - Py )]

L <k[alpr@) - rom)|

X
< Lllul, 0. I [|F(r @) ~ Fr e, —o.
as h — 0. Hence,
lim w —AY (1)) — AF(Y (t)) =0. ]
h—0+ h X

Theorem 3.7. Let Yy € X5, s > 0. Then there exist T* > 0 and Y € C([0,T]; Xs)
satisfying the integral equation (11).

Proof. Let us define the set

Sur = {Y: (§) ectoriz s sup v - Tl < M},

te(0,T)

with the norm [l oqo.11.x,) = Stbrcoz) (KO, + [u(®)],), where ¥ = (,u)T. Ob-
serve that endowed with this norm, Sy is a complete set in C([0,T]; Xs) and F is
continuous in Sy; as a consequence of Lemma 3.5.

For Y € Sy, we define the operator

v () =T+ T — O AF(Y (€))de.

Observe that

W (t+h) = U (@),
t+h

= [T+ mye+ [ T+ - AP (€)1 - TV

/th EAF(Y

< (Tt 4+ B) — TWO)Yollx, + H /0 (T(+h— &) — T(t— ) AP(Y(

t+h

T(t+h—&AF(Y(£))dE

J’_
t

X

Note that the first term at the right side above satisfies
lim [[(7(t+h) = T()Yol x, =0,
h—0* s
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72 F.A. Prricano & J.C. MuNoz GRAJALES

since (T(t))s>0 is a Cp-semigroup in X;. The second and third terms at the right side
are controlled using the Lebesgue’s dominated convergence theorem. Note that

(Tt +h =& =Tt = )AFY () x, < KIAFY ()], <KIFF(E)lx, »

and
i ([(T(t+h =€) = T(t = E)AFY ()], = 0.
Thus,
Jim | [T n -9 - epareen|
< Jm |4 n -6 - T - AFv @), de=0.
Finally,

[Tt +h=AFY ())llx, < Llully, 0, ICI) 1Y (€],
= K(llullx, + <l (lullx, + 1<l x,)
= K(llull v, + 1<l 2,)?
= K|V,
< (M +K|[[Yol x,)%
which is a consequence of the estimate
Y @O)llx, = IIV(E) = T()Yo + T()Yoll x,
<Y () = TO)Yollx, + 1T()Yollx,
< (M +K|[Yolly,)-

Since
i [Tt +h = AF(Y (€)ll, =0,

it follows that

lim
h—0+

t+h
/t T(t+ h— €)AF(Y (€))de

t+h
) < lim. / T (t+h — E)AF(Y(€))] v, d€

= 0.
Hence, if Y € Sy, then ¥(Y) € C([0,77; Xs). On the other hand,
t
(@) - Tlmal, = | [ 7o - 47 (@0
0 X,

t
< / L(lfull, 0, 1C1,) 1Y (€) ], de.
< TKL(M + K Yo, 0, M + K|[Yo 1. )(M + K [Yo| .-
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Thus, choosing

M
KL(M + K [[Yollx, , 0, M + K|[Yoll x )(M + K[[Yo] )’

T =

we obtain that W (Y (t)) € Sas provided Y (¢) € Sas.

To see that there exists T such that ¥ is a contraction in Sy; for T' < Ty, let us observe
that

e (1) = e (1), = H / T(t—&A[F(Y(E) - F(V(9))]

< KTL(M + K |[[Yoll, 0, M + K[[Yoll,) sup [V (&)
£€(0.7]

~Y(9)

X

Thus, choosing
1

T, = :
* T KL(M + K [[Yoll, .0, M + K Yol x,)

we obtain that ¥ is a contraction on Sys. Thus, with T* < min{7}, 7>} and by applying
the Banach Fixed-Point Theorem on Sy, we get the desired result. ]

Theorem 3.8. The solution obtained in Theorem 3.7 is unique and depends continuously
on the initial condition Yj.

Proof. Let Y = (2) and Y = (5) be elements in C([0,T7]; Xs) solutions of the integral

equation (11) with initial data Yy = (20) and Yo = (%0), respectively. Then,
0 0

[Y() =Y ()]

v =[O0 -Fo+ [ Ta-garore) - Fvo)) de

s

X

<K |[Yo - Vo + / KLl 1, IS Y () - Y (©)]) . de
<K (||Yo = Vol + Kl Nl D) [ 1O - F@)l, ds) .

Let L := supepo, ) L([u®)ll,, [@@Il,, [[C(#)],)- The Gronwall inequality implies that

LT

1Y (0) =Y @)l , < KIIYo = Vol ) < K[Yo = Vol e,

for all t € [0,T]. Hence, we conclude the uniqueness and continuous dependence of the
solutions on initial data. ]

4. Numerical results

In this section we will analyze the error of fully discrete numerical scheme for approxi-
mating the initial value problem for system (1) introduced by Munoz in [12]. In this

Vol. 34, No. 1, 2016]



74 F.A. Piricano & J.C. MuNoz GRAJALES

numerical scheme, the spatial computational domain [0, L] is discretized by N € 27
equidistant points, with spacing Az = L/N. Then, we approximate the unknowns u
and ¢ with spatial period L as truncated Fourier series in space with time-dependent
coefficients:

N/2
u(w,t) = Z ﬁ]-(t)eiw””,
j=—N/2+1 (16)
N/2
()= Y G,
j=—N/241
with o
w; = % = —N/2+1,..0,..,N/2.

The time-dependent coefficients @;(t) for j = —N/2+1,...0,..., N/2 are calculated by
means of the equation

1 [ ‘
u;(t) = Z/o u(z, t)e”""%dx,

and similarly for ¢;(t).

Projecting equations (1) with respect to the orthonormal basis ¢; = L=1/2¢i% and the

inner product
L
- [ @
0

we derive that

() = (1= 00, 85) = & (G 64,
N 2 (17)
(e 63) + S UWP)a05) + (1= pr){Gor 05) = pre(Hlutar), 65) + = (taats 65).

Now substituting the Fourier expansions (16) into equations (17), using the orthogonal
property of the basis ¢; and, integration by parts, we obtain

. €2
G ) — iy Pyl — acu] = - Swid,
. 1Qw; 9 . €2 (18)
uj(t)+ B Pj[u] +dw; (1 = py Cj —ﬂﬁzlws (H(s), ¢]>_ijuj7
where P;[] is the operator defined by
I o
Pl = [ s (19)
0

Then, using the properties of the Hilbert Transform, system (18) reduces to

N

. ] € .
C}(t) —iw; Pj[(u — au] = —Ew? J/-,
. 2
N iaw; . s ., € .
u;(t) + 1 p; [u?] + iw;(1—pr)G = —pTe|wj|u;- - wau;
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Finally, we reach expressions for the Fourier coefficients of the unknowns u and (:

= %Pj[(“ - aCu)],
I, . ) (20)
o dwi(p =G iow; Pju?]

u., =
T4 prefws| + Sw? o 2(1 + prefwj] + Sw?)

)

subject to (;(0) = Coj, ©j(0) = dgj. Equations (20) can be considered as a system of
ordinary differential equations for each frequency w;, which we discretize numerically by
the following second-order scheme:

Antl)  2(n) A(ntl) | a(n) .
GG el )75( o )P-[aCu}m)

At 2 1+ Sw? 2\1+ w2/

1 1w,
+ —<7j )P- alu)™Y,
. . 21

Aty —a iw(pr - DGV ) Biaw, Py

At 2(1 + pre|w;| + %w]z) 4(1 + pre|w;| + %wjz)

iaw; P;[u?) "1

4(1 + prefw;| + %w?)

A<n), 6](@) denote the numerical approximations of the

Here At denotes the time step and u;

Fourier coefficients @;(t), fj (t), respectively, at time ¢ = nAt. Also the notation P; [g]™
means the value of Pj[g] when g is evaluated at time ¢ = nAt.

4.1. Description of the numerical experiments

In this section, we wish to analyze the accuracy of the numerical scheme (21) described
above in some numerical experiments.

Linear regime: First we solve system (1) with initial conditions

¢(z,0) = cos (%Tz)’ u(z,0) = — cos (%TT>,

and subject to spatial periodic conditions on an interval [0, L]. The parameters of the
model are a = 0 (linear regime), ¢ = 1, p, = p2/p1 = 1.1, L = 100, and the numerical
parameters are N = 27, At = 0.01. In Figure 2, we superimpose the exact solution
computed in (7) in the linear case together with the output of the numerical scheme (21)
evaluated at ¢ = 100. The difference between the profiles is about le — 8 showing that
the scheme reproduces very well the dispersive characteristics of model (1).

In Figure 3, we repeat the previous numerical experiment but using instead a weak level
of dispersion ¢ = 0.01 and p, = 3. Other parameters and initial conditions are left
unchanged. The result is presented in Figure 3. We see again a good agreement (of order
le — 8) between the prediction of the numerical scheme and the exact solution given in
(7). Neither numerical dispersion nor attenuation were observed in the simulations here
presented and in many others performed for other values of the modelling parameters.
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{ at=100

100

05

04

03

02

01

u att=100

T T

40 60 80 100

Figure 2. Solid line: Numerical solution of system (1) in the linear case (a = 0), ¢ = 1 and p, = 1.1.

Dotted line: exact solution (7).

¢ at =100
1 . : :

08

08

04

02

80

100

05

u at t=100

T T

40 60 80 100

Figure 3. Solid line: Numerical solution of system (1) in the linear case (o = 0), € = 0.01 and p, = 3.

Dotted line: exact solution (7).
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Nonlinear regime: In the next numerical simulation, we conduct a computer experiment
using an approximate periodic travelling wave with speed ¢ of system (1) in the form

C(I’,t) = (0(:17 - Ct)v u($7 t) = uO(‘T - Ct)v

with (o, ug being L-periodic functions showed in Figure 4, computed through the numeri-
cal scheme introduced in [14] with initial conditions

Co(z) = 10 cos (%Tac)’ up(x) = 10 cos (%Tm)’

and L =4, ¢ =15, a = ¢ = 0.1, p, = 2. We run the numerical solver (21) using the
profiles in Figure 4 as initial conditions and At = 5e — 4, N = 28, L = 4. In Figure 5,
the resulting profiles are displayed at t = 20. We observe that the two profiles coincide
with accuracy of roughly 3e — 4, and the travelling wave propagates with the expected
speed without changing its shape.

05 1 15 2 25 3 35 4 0 05 1 15 2 258 3 35 4
g £
Figure 4. Approximate travelling wave of system (1) computed using the numerical method in [14]

after 10 Newton’s iterations. Period L = 4, wave speed ¢ = 1.5, p, =2, a = e = 0.1, N = 28 FFT points
in space.

4.2. Order in space of the Fourier method

We wish to analyze the order of convergence in space of the fully discrete numerical
method (21). In the experiment displayed in Figure 6, we fix a small time step At = le—4
and increase gradually the number of FFT points in space. We use the approximate
periodic travelling wave in Figure 4 with the same parameters. We start with N = 2°
and increase by 2 until we get N = 28. In each simulation, we run the numerical solver
(21) within the time interval [0,1], for every value of N. From Figure 6, we can see
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¢ at t=20 u at t=20
0 T T T T T r T 12 T T T T T T r
10
-5
8
-10
6
-15
4
-20
2
25 . . A L 0
0 05 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4
4 3

Figure 5. Solid line: Numerical solution with method (21) of system (1) for « = 0.1 and € = 0.1, p, = 2.
Dotted line: Approximate periodic travelling wave computed in [14] at ¢t = 20 (5 times its period).

that the error in space of scheme (21) decreases very rapidly approximately as N7, in
accordance with the spectral accuracy of the semidiscrete approximation established by
Muiioz in [12].

N B e e e e A e S e L B e e e

N il

3 il

4k il

[ AN ]
\\

i ]
5L S il
—6; \\\ ]

N S S S S IR B ¥

1.8 1.9 2.0 2.1 22 2.3 24

Figure 6. Plot of the decimal logarithm of the maximum error against log,;y N. The time step is fixed
at At = le — 4. We see that the plot is approximately a line (see dashed line) with slope —7.8.

4.3. Order in time of the Fourier method

Now, we want to check numerically the order in time for the numerical scheme (21). We
use the same periodic travelling wave of system (1) as in the previous experiment. We
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choose N = 28 (Az = L/N = 1.5¢ — 4), the error in space does not dominate the total
error. We start with At = 1/2 and decreasing the time step by 1/2 until At = 1/26.
In each computer simulation, we run the numerical solver (21) within the time interval
[0,1], for every value of At. In Figure 7, we can see that the error of scheme (21) is
approximately of order 2 in time.

-14 -12 -1.0 -0.8 -0.6 -0.4

Figure 7. Plot of the decimal logarithm of the maximum error against log;y N. The number of points
in space is fixed at N = 2!8. We see that the plot is approximately a line with slope 2.
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