Yadira Caicedo Bravo, Carlos A. Martos, Carlos A. Trujillo
Se dice que un conjunto de enteros positivos A satisface la regla g-Golomb si la diferencia entre dos elementos distintos de A se repite a lo más g veces. Esta definición es una generalización de las reglas de Golomb (g = 1). En este artículo construimos reglas g-Golomb a partir de reglas Golomb y demostramos dos teoremas sobre las funciones extremas asociadas con estos conjuntos.
A set of positive integers A is called a g-Golomb ruler if the difference between two distinct elements of A is repeated at most g times. This definition is a generalization of the Golomb ruler (g = 1). In this paper we construct g-Golomb ruler from Golomb ruler and we prove two theorems about extremal functions associated with this sets.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados