Ir al contenido

Documat


Integrabilidad de un sistema con doble conmutador

  • Felipe, Raúl [2] ; López Reyes, Nancy [1]
    1. [1] Universidad de Antioquia

      Universidad de Antioquia

      Colombia

    2. [2] Centro de Investigaciones Matemáticas, Guanajuato, Gto., México.
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 31, Nº. 1, 2013 (Ejemplar dedicado a: Revista Integración), págs. 15-23
  • Idioma: español
  • Títulos paralelos:
    • Integrability of a double bracket system
  • Enlaces
  • Resumen
    • español

      Se utiliza un enfoque algebraico basado en la descomposión de grupos para mostrar la integrabilidad de un sistema de infinitas ecuacionesde Lax con doble corchete.

    • English

      A group factorization approach is used to show the integrability of a system of infinite equations of Lax type with double bracket.

  • Referencias bibliográficas
    • Citas [1] Benítez-Babilonia L., Felipe R. and López N., “Algebraic analysis of a discrete hierarchy
    • of double bracket equations”, Differ. Equ. Dyn. Syst. 17 (2009), no. 1-2, 77–90.
    • [2] Bloch A.M., Brockett R.W., and Ratius T.S., “Completely integrable gradient flows”,
    • Comm. Math. Phys. 147 (1992), 57–74.
    • [3] Cassidy Ph.J. and Singer M.F., “A Jordan-Holder Theorem for differential algebraic
    • groups”, J. Algebra 328 (2011), 190–217.
    • [4] Dickey L.A., Soliton equations and Hamiltonian systems. Advanced Series in Mathematical
    • Physics, 12, New Jersey, 1991.
    • [5] Felipe R., “Algebraic aspects of Brockett type equations”, Phys. D 132 (1999), no. 3, 287–
    • [6] Felipe R. and Ongay F., “Super Brockett Equations: A Graded Gradient Integrable System”,
    • Comm. Math. Phys. 220 (2001), no. 1, 95–104.
    • [7] Felipe R. and Ongay F., “Algebraic aspects of the discrete KP hierarchy”, Linear Algebra
    • Appl. 338 (2001), 1–17.
    • [8] Kolchin E.R., Differential Algebra and Algebraic Groups. Academic Press, New York, 1976.
    • [9] Mulase M., “Complete integrability of the Kadomtsev-Petviashvili equation”, Adv. in Math.
    • (1984), no. 1, 57–66.
    • [10] Mulase M., “Algebraic theory of the KP equations,” Perspective in Mathematical Physics
    • (ed. Penner R. and Yau S.T.), Cambridge, (1994).
    • [11] Schiff J., “The Camassa-Holm Equation: A Loop group approach”, Phys. D 121 (1998),
    • no. 1-2, 24–43.
    • [12] Tsarev S.P., “Factorization of linear differential operators and systems”, Algebraic Theory
    • of Differential Equations, in London Math. Soc. Lecture Note Ser. 357, Cambridge Univ.
    • Press, Cambridge, (2009) 111–131.
    • [13] Semenov-Tian-Shansky M.A., Integrable Systems and Factorization Problems, Oper. Theory
    • Adv. Appl. 141, Birkhäuser, Basel, 2003.
    • [14] Tam T-Y., “Gradiente flows and double bracket equations”, Differential Geom. Appl. 20
    • (2004), no. 2, 209–224

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno