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a system of infinite equations of Lax type with double bracket.
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Integrabilidad de un sistema con doble conmutador

Resumen. Se utiliza un enfoque algebraico basado en la descomposión de
grupos para mostrar la integrabilidad de un sistema de infinitas ecuaciones
de Lax con doble corchete.
Palabras claves: Ecuación de Lax, jerarquía Brockett, sistema completamente
integrable.

1. Introduction

Mulase [9, 10] introduced a remarkable method to obtain solutions of the KP hierarchy.
His results on a feasible extension of concepts such as flat connections, gauge transforma-
tions, Frobenius integrability, etc. to the space of pseudo-differential operators (infinite
dimensional case) made it possible to consider the hierarchy as only one equation. How-
ever, the key point that should be emphasized in Mulase [10] is a theorem of factorization
for formal series of the form:

∞∑

−∞
ak∂

k, ∂ =
d

dx
.

This factorization theorem has a very similar aspect to the Birkhoff decomposition of
loop groups and the Riemann-Hilbert problem for functions of complex variable.

Felipe and Ongay [6] showed that Mulase’s ideas can be applied in quite a similar form to
the discrete KP hierarchy. In this context, a Borel-Gauss factorization for semi-infinite
and bi-infinite matrices plays an important role. We also mention a paper by Schiff [11]
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16 R. Felipe & N. López Reyes

where the Mulase approach is used to prove the complete integrability of the Camassa-
Holm hierarchy (this hierarchy contains the now well known Camassa-Holm equation,
see [11] for details).

Bloch, Brockett and Ratiu [2] found integrable gradient flows of ODE’s. These equations
were defined as Lax type equations with more than one Lie bracket in connection with
some least squares matching and sorting problems.

A version of PDE’s of the Brockett type equations has been introduced by Felipe [5]. A
particular feature of these equations is the existence of an infinite number of conserved
quantities, and also that they belong to a hierarchy similar to the well known n-KdV
or KP hierarchy. It was proved in [5] that each equation of the Brockett hierarchy is
equivalent to a certain gradient flow in the space of pseudo-differential operators. Also,
Felipe and Ongay [6] have studied a supersymmetric extension of the Brockett hierarchy.

In this paper we will prove the complete integrability of a double bracket system, the
so-called Brockett hierarchy, showing its related group factorization. This is a remarkable
fact, because, as it is known, a completely integrable system is always related with some
kind of group factorization [13]. We apply the same approach used in [7, 10] for the KP
hierarchy, to a more general case where the equations of the hierarchy are defined with
double bracket instead of only one. In spite of that, from an algebraic point of view
[8], the settings are similar in both the cases; the results developed in this article have
important particularities.

2. The Brockett hierarchy

The Brockett hierarchy can be introduced in the following form: let L be a Lax operator,
i.e., L = ∂+

∑∞
k=1 ak∂

−k. Initially the only requirement on the coefficients ak of L, that
these depend on x and an infinite set of temporal variables t1, t2, . . . . We recall that the
Brockett hierarchy is defined as

∂L

∂tn
=
[
L,
[
L,Ln

+

]]
, n = 1, 2, . . . , (1)

where we use the notation R+ to indicate the differential part of a pseudo-differential
operator R. We also reserve R− to denote the integral part of R; it is meant that we
can write R− = R − R+. The important point is that, for a Lax operator L, there
exists a dressing operator S = 1 + s1∂

−1 + s2∂
−2 + · · · such that L = S∂S−1. It is

easy to show that the operator S is unique up to right multiplication by those operators
C = 1 + c1∂

−1 + c2∂
−2 + · · · for which [C, ∂] = 0.

Note that each equation of (1) can be interpreted as the compatibility condition for the
following system of equations:

Lφ = φ∂,
∂φ

∂tn
=
[
L,Ln

−
]
φ, n = 1, 2, . . .

where φ is an element of the group of dressing operators. Those pseudo-differential
dressing operators S for which

∂S

∂tn
=
[
L,Ln

−
]
S, n = 1, 2, . . . (2)
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where L = S∂S−1, will be of particular importance to us. Such S will be called Sato-
Wilson operators.

From now on, we use E(−1) to denote the subalgebra of pseudo-differential operators R,
such that R+ = 0. It means that we are considering the pseudo-differential operators
R ∈ E = E(−1)⊕D, where D denotes the subalgebra of differential operators R such that
R− = 0. The “nilpotent" part E(−1) of E has a formal closed Lie group G = 1 + E(−1)

which acts on E by adjoint action, preserving the order of elements of E, see [9]. One
can easily see that, if S ∈ G is a Sato-Wilson operator, then L = S∂S−1 is a solution of
the Brockett hierarchy.

Note that the system (2) can also be written as

dS = Bc (S)S, (3)

where Bc (S) is the 1-form, Bc (S) =
∑∞

n=1B
−
n (S) dtn, B−

n (S) =
[
L,Ln

−
]

and d is the
usual differentiation on the infinite set of temporal variables t1, t2, . . . . Obviously, this
definition of Bc (S) also makes sense even if S is not Sato-Wilson operator. In the rest
of the paper we will consider 1-form with coefficients in the algebra of pseudo-differential
operators. It means we will have formal sums that will be manipulated according to the
rules of “exterior algebra.”

We can see that system (1) is equivalent to

dL = [L,−Bc(S)]. (4)

Now, it can be shown that equation (2) implies

∂B−
n (S)

∂tm
− ∂B−

m (S)

∂tn
=
[
B−

m (S) , B−
n (S)

]
, n,m = 1, 2, . . . . (5)

An equation of the form (5) is called Zakharov-Shabat or zero-curvature equation. The
name “zero-curvature” can be explained as follows in the 1-form: Bc (S) on C with
coefficients in the Lie algebra E(−1) can be written in virtue of (4) as

dBc(S) = Bc(S) ∧Bc(S), (6)

which is the Maure-Cartan equation. If we interpret Bc (S) as a connection form on the
trivial subbundle C×E(−1) and S being a Sato-Wilson operator, then from (6) we can
conclude that Bc (S) is flat. An equivalent expression of (6) is

dBc (S) =
1

2
[Bc (S) , Bc (S)] . (7)

In the same way, if we put B+
n (S) = Ln + [L,Ln

−], then we can define the 1-form

B(S) =

∞∑

n=1

B+
n (S)dtn

=

∞∑

n=1

(Ln + [L,Ln
−])dtn

=
∞∑

n=1

Lndtn +Bc(S), (8)
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with coefficients in the Lie algebra E. Then, system (1) can be written as

dL = [L,B(S)]. (9)

Again, if S is Sato-Wilson operator, then the connection B (S) on the trivial subbundle
C × E is flat and analogously the 1-form B (S) satisfies a zero-curvature equation like
(7). That is

dB (S) =
1

2
[B (S) , B (S)] . (10)

Lemma 2.1. Let L be a Lax operator such that L satisfies (1) and let S ∈ G be a dressing
operator for L, i.e., L = S∂S−1. Then

[

∂, S−1B−
n (S)S − S−1 ∂S

∂tn

]

= 0 (11)

for n = 1, 2 . . . .

Proof. Suppose L satisfies (1) and L = S∂S−1. Calculating the left side of (11), we have

[

∂, S−1B−
n (S)S − S−1 ∂S

∂tn

]

= S−1

[

L,B−
n (S)− ∂S

∂tn
S−1

]

S

= S−1

(
[
L,
[
L,Ln

−
]]

+

[
∂S

∂tn
S−1, L

])

S

= S−1

(

−
[
L,
[
L,Ln

+

]]
+

[
∂S

∂tn
S−1, L

])

S

= S−1

(

− ∂L

∂tn
+
∂L

∂tn

)

S

= 0,

which is the desired result. �XXX

From Lemma 1 it follows that if L = S∂S−1 satisfies (1) then the gauge transformation
of B(S), Hc(S) = S−1Bc(S)S − S−1dS has only constant coefficients. It should be
remarked that in the suppositions of the Lemma 2.1 the dressing operator S of L is
not assumed to be a Sato-Wilson operator. In particular, if S is Sato-Wilson, then
Hc(S) = 0.

Let Ω be the 1-form, Ω =
∑∞

n=1 ∂
ndtn. Then Ω satisfies the integrability condition

dΩ = Ω ∧ Ω, because dΩ = 0 and Ω ∧ Ω = 0.

Proposition 2.2. Let S ∈ G be a Sato-Wilson operator and define

H(S) = S−1B(S)S − S−1dS.

Then H(S) = Ω.
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Proof. Using (8), we obtain

H(S) = S−1

( ∞∑

n=1

(
Ln − [L,Ln

+]
)
dtn

)

S − S−1dS

=

∞∑

n=1

∂ndtn + S−1Bc(S)S − S−1dS

= Ω+Hc(S).

Now, noting that Hc(S) = 0, we have H(S) = Ω. �XXX

Proposition 2 indicates that B(S) will be a flat connection on the trivial bundle C× E,
because Ω is clearly a flat connection and

B(S) = SΩS−1 − SdS−1.

3. Some auxiliary problems

Let G0 be the set of all dressing operators corresponding to solutions L of the Brockett
hierarchy. Note that if S is a Sato-Wilson operator, then S ∈ G0. We start with the
study of Cauchy problem

dY = B(S)Y, Y (0) = I, (12)

where S ∈ G0. It is suitable to find the solution of (12) in the form Y = SZ. For this
we write the corresponding Cauchy problem as

dZ =
(
S−1B(S)S − S−1dS

)
Z, Z(0) = S−1(0).

Lemma 3.1. If S ∈ G0, then

[(
S−1B(S)S − S−1dS

)
, ∂
]
= 0.

Proof. We have

S−1B(S)S − S−1dS = S−1

( ∞∑

n=1

Ln −
[
L,Ln

+

]
)

S − S−1dS

=

∞∑

n=1

∂ndtn +

∞∑

n=1

(

S−1
[
L,Ln

−
]
S − S−1 ∂S

∂tn

)

dtn.

Now, from Lemma 2.1, we get
[(

S−1
[
L,Ln

−
]
S − S−1 ∂S

∂tn

)

, ∂

]

= 0,

from which the proof is immediate. �XXX

Remark 3.2. Note that if S is Sato-Wilson, then Lemma 3 is evident from Proposition
2.
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Let H(S) be the 1-form defined as

H(S) =
∞∑

n=1

Hn (S) dtn.

Then, we must resolve the Cauchy problem

dZ = H (S)Z, Z(0) = S−1(0) (13)

for S ∈ G0. Notice that if S is Sato-Wilson, then H(S) =
∑∞

n=1 ∂
ndtn = Ω. In this case

the coefficient H (S) in (13) does not depend on x, but it still depends on the temporal
variables t1, t2, . . . .

Let G1 be the set of all elements S ∈ G0 for which there exists Θ(S, t1, t2, . . .) such
that dΘ(S, t1, t2, . . .) = H (S). It is equivalent to say that H (S) has a primitive
function Θ(S, t1, t2, . . .) =

∑∞
n=1 Θn (S, t1, t2, . . .). From Lemma 3.1, we have that if

Θ(S, t1, t2, . . .) exists, then [Θ (S, t1, t2, . . .) , ∂] = 0 and also Θ(S, 0, 0, . . .) = 0. Observe
that if S is Sato-Wilson, then S ∈ G1, which means that G1 is not empty.

Remark 3.3. Assume that S ∈ G0 and

H (S) =

∞∑

n=1

Hn (S) dtn =

∞∑

n=1

∂Θn (S, t1, t2, . . .)

∂tn
dtn.

If, for any i and j, we have
Hi (S)

∂tj
=
Hj (S)

∂ti
,

then S ∈ G1.

On the other hand, Hn (S) = ∂n +Cn (S), where Cn (S) ∈ E(−1). Hence if S ∈ G1, then
Θ(S) = Θ++Γ(S), with [Γ (S) , ∂] = 0 and Γ (S) ∈ E(−1). Moreover, Θ+ =

∑∞
n=1 tn∂

n.
Note that

H(S) = dΘ(S) = dΘ+ + dΓ(S) = Ω + dΓ(S).

In particular, if S is Sato-Wilson then dΘ = dΘ+ = Ω and dΓ = 0.

We say that Γ (S) ∈ E(−1), S ∈ G1, is the gauge trace of S if Γ (S, t1, t2, . . .) is the formal
series in ∂ such that

dΓ (S) =

∞∑

n=1

(

S−1
[
L,Ln

−
]
S − S−1 ∂S

∂tn

)

dtn.

Theorem 3.4. Let S ∈ G1. Then, the general solution of the equation

dZ = H (S)Z (14)

is given by
Zg = eΘ(S) = eΓ(S,t1,t2,...)eΘ+ . (15)
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Integrability of a double bracket system 21

Proof. Note that if S ∈ G1 then there exists Θ(S) such that dΘ(S) = H(S) and Θ(S) =
Θ+ + Γ (S, t1, t2, . . .). For these reasons, by taking Z = eΘ(S), where S ∈ G1, we have

dZ = eΘ(S)dΘ(S) = eΘ(S)H(S) = H(S)eΘ(S) = H(S)Z.

Hence (15) is a general solution of (14). �XXX

Therefore, the corresponding particular solution Z of the Cauchy problem (13) can be
written as

Z = eΓ(S,t1,t2,...)eΘ+S−1(0). (16)

It follows from (16) that formal general solution of (12) is

Y = SZ

= SeΓ(S,t1,t2,...)eΘ+ . (17)

Note that the right hand side of (17) is formally invertible and eΓ(S,t1,t2,...) ∈ E(−1).

Definition 3.5. Define F (S) = S−1eΓ(S,t1,t2,...), where S ∈ G1, as the formal Fourier
transform of S.

It is clear that F (S) : G1 → G, and also, if S is Sato-Wilson then dΓ(S, t1, t2, . . .) = 0,
so

[Γ(S, t1, t2, . . .), ∂] = 0 = [eΓ(S,t1,t2,...), ∂].

Thus F (S) = S−1eΓ(S,t1,t2,...) is also Sato-Wilson because of the fact that eΓ(S,t1,t2,...) is
a constant operator.

4. Solutions for the Brockett hierarchy

Denote by Ê and D̂ the formal Lie groups of the Lie algebras E and D, respectively. We
have a group decomposition Ê = G • D̂ (Lemma 3, [9]) where G ∩ D̂ = {1}.
Let t = (t1, t2, . . .) and let GB be the set of all S belonging to G for which

(a) there is Θ(S, t) such that dΘ(S, t) = H (S) ,

(b) if H(S) = S−1B(S)S − S−1dS, then [H(S), ∂] = 0.

Obviously G1 ⊂ GB. We can consider the gauge trace Γ (S) and the formal Fourier
transform F (S) = S−1eΓ(S,t) of S.

Theorem 4.1. The equation (1) of the Brockett hierarchy is equivalent to the linear
differential equation

dU = ΩU, U ∈ Ê. (18)
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Proof. Assume that L is a solution of (1). Then, there exists a Sato-Wilson operator S
such that L = S∂S−1. In this case we recall that H(S) = Ω, so B(S) = SΩS−1+dSS−1

is a flat connection on C×E. Then, we can find W ∈ Ê such that B(S) = dWW−1 and
define U = S−1W with W = eΓ(S,t)X , X ∈ D̂. Thus, U = S−1eΓ(S,t)X . It is obvious
that U satisfies the linear equation (18). In fact,

dU = d(S−1eΓ(S,t)X)

= dS−1 · eΓ(S,t)X + S−1d(eΓ(S,t)X),

= (−S−1(dS) +B(S)S)S−1eΓ(S,t)X = ΩU.

Conversely, let us assume that dU = ΩU with U ∈ Ê. Decompose it into U = F (S)X

with F (S) = S−1eΓ(S,t) ∈ G and X ∈ D̂. Define L = S∂S−1 and B(S) = d(eΓ(S,t)X) ·
(eΓ(S,t)X)−1. It is clear that

0 = U−1ΩU − U−1dU = (F (S)X)−1Ω(F (S)X)− (F (S)X)−1d(F (S)X)

= (S−1eΓ(S,t)X)−1ΩS−1eΓ(S,t)X − (S−1eΓ(S,t)X)−1d(S−1eΓ(S,t)X)

= (eΓ(S,t)X)−1(SΩS−1 − SdS−1)eΓ(S,t)X − (eΓ(S,t)X)−1d(eΓ(S,t)X)

= (SΩS−1 + dS · S−1)− d(eΓ(S,t)X) · (eΓ(S,t)X)−1

= (SΩS−1 + dS · S−1)−B(S)

= Ω + S−1dS − S−1B(S)S, (19)

from which we obtain S−1B(S)S−S−1dS = H(S) = Ω. Consequently, there is a Θ(S, t)
such that dΘ(S, t) = Ω =

∑∞
n=1 ∂

ndtn. In fact Θ =
∑∞

n=1 tn∂
n, so S ∈ GB .

Let us show that S ∈ G1. If H(S) = dΘ(S, t) = Ω, then dΓ(S, t) = 0 (see Remark 5).
So S ∈ G1. Moreover S is Sato-Wilson and, as L = S∂S−1, is a Brockett hierarchy
solution. �XXX

Let us now consider the initial value problem of (18). For t = 0,

U(0) = S−1(0)eΓ(S
−1,0)X(0)

= S−1(0)X(0).

Since X(0) = 1,we have U(0) = S−1(0). Therefore, the solution is given by

U(t) = e(
∑

∞

n=1
tn∂

n)U(0)

= e(
∑

∞

n=1
tn∂

n)S−1(0).
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