Ir al contenido

Documat


Resumen de Numerical Radius Inequalities for Several Operators

Omar Hirzallah, Fuad Kittaneh

  • Let $A$, $B$, $X$, and $A_{1},\dots,A_{2n}$ be bounded linear operators on a complex Hilbert space. It is shown that \[ w\Bigl(\sum_{k=1}^{2n-1}A_{k+1}^{\ast}XA_{k}+A_{1}^{\ast}XA_{2n}\Bigr) \leq 2\Bigl( \sum_{k=1}^{n}\Vert A_{2k-1}\Vert^{2}\Bigr)^{1/2}\Bigl(\sum_{k=1}^{n}\left\Vert A_{2k}\right\Vert^{2}\Bigr)^{1/2}w(X) \] and \[ w(AB\pm BA)\leq 2\sqrt{2}\,\Vert B\Vert \sqrt{w^{2}(A)-\frac{\vert \Vert {\operatorname{Re} A}\Vert^{2}-\Vert {\operatorname{Im} A}\Vert^{2}\vert}{2}}, \] where $w(\cdot)$ and $\left\Vert \cdot \right\Vert$ are the numerical radius and the usual operator norm, respectively. These inequalities generalize and refine some earlier results of Fong and Holbrook. Some applications of our results are given.


Fundación Dialnet

Mi Documat