Ir al contenido

Documat


Numerical Radius Inequalities for Several Operators

  • Autores: Omar Hirzallah, Fuad Kittaneh
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 114, Nº 1, 2014, págs. 110-119
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-16641
  • Enlaces
  • Resumen
    • Let $A$, $B$, $X$, and $A_{1},\dots,A_{2n}$ be bounded linear operators on a complex Hilbert space. It is shown that \[ w\Bigl(\sum_{k=1}^{2n-1}A_{k+1}^{\ast}XA_{k}+A_{1}^{\ast}XA_{2n}\Bigr) \leq 2\Bigl( \sum_{k=1}^{n}\Vert A_{2k-1}\Vert^{2}\Bigr)^{1/2}\Bigl(\sum_{k=1}^{n}\left\Vert A_{2k}\right\Vert^{2}\Bigr)^{1/2}w(X) \] and \[ w(AB\pm BA)\leq 2\sqrt{2}\,\Vert B\Vert \sqrt{w^{2}(A)-\frac{\vert \Vert {\operatorname{Re} A}\Vert^{2}-\Vert {\operatorname{Im} A}\Vert^{2}\vert}{2}}, \] where $w(\cdot)$ and $\left\Vert \cdot \right\Vert$ are the numerical radius and the usual operator norm, respectively. These inequalities generalize and refine some earlier results of Fong and Holbrook. Some applications of our results are given.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno