Ir al contenido

Documat


A local fixed point theorem for set-valued mappings on partial metric spaces

  • Autores: Abdessalem Benterki
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 17, Nº. 1, 2016, págs. 37-49
  • Idioma: inglés
  • DOI: 10.4995/agt.2016.4163
  • Enlaces
  • Resumen
    • The purpose of this paper is to study the existence and location of fixed points for pseudo-contractive-type set-valued mappings in the setting of partial metric spaces by using Bianchini-Grundolfi gauge functions.

  • Referencias bibliográficas
    • M. Abbas, B. Ali, and C. Vetro, A Suzuki type fixed point theorem for a generalized multivalued mapping on partial Hausdorff metric spaces,...
    • (http://dx.doi.org/10.1016/j.topol.2013.01.006)
    • T. Abdeljawad, E. Karapinar and K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett, 24 (2011),...
    • (http://dx.doi.org/10.1016/j.aml.2011.05.014)
    • R. P. Agarwal, M. Meehan and D. O'Regan, Fixed point theory and applications, Cambridge: Cambridge University Press, 2001.
    • I. Altun, F. Sola, and H. Simsek, Generalized contractions on partial metric spaces, Topology Appl. 157 (2010), 2778-2785.
    • (http://dx.doi.org/10.1016/j.topol.2010.08.017)
    • H. Aydi, M. Abbas and C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl. 159...
    • (http://dx.doi.org/10.1016/j.topol.2012.06.012)
    • V. Berinde, Iterative approximation of fixed points, Berlin: Springer, 2nd revised and enlarged ed., 2007.
    • A. L. Dontchev, Local convergence of the Newton method for generalized equations, C. R. Acad. Sci., Paris, Sér. I, 322 (1996), 327-331.
    • A. L. Dontchev and W. W. Hager, An inverse mapping theorem for set-valued maps, Proc. Am. Math. Soc. 121 (1994), 481-489.
    • (http://dx.doi.org/10.1090/S0002-9939-1994-1215027-7)
    • W.-S. Du, E. Karapinar and N. Shahzad, The study of fixed point theory for various multivalued non-self-maps, Abstr. Appl. Anal. 2013 (2013),...
    • P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res. 44 (1993), 7-42.
    • (http://dx.doi.org/10.1007/BF02073589)
    • M. C. Ferris and J. S. Pang, Engineering and economic applications of complementarity problems, Siam Rev. 39 (1997), 669-713.
    • (http://dx.doi.org/10.1137/S0036144595285963)
    • M. H. Geoffroy, S. Hilout, and A. Pietrus, Acceleration of convergence in Donchev's iterative method for solving variational inclusions,...
    • M. H. Geoffroy and A. Piétrus, An iterative method for perturbed generalized equations, C. R. Acad. Bulg. Sci. 57 (2004), 7-12.
    • M. H. Geoffroy and A. Piétrus, A fast iterative scheme for variational inclusions, Discrete Contin. Dyn. Syst., 2009 (2009), 250-258.
    • F. Giannessi and A. Maugeri, eds., Variational inequalities and network equilibrium problems. Proceedings of a conference, Erice, Italy, June...
    • (http://dx.doi.org/10.1007/978-1-4899-1358-6)
    • S. Hu and N. S. Papageorgiou, Handbook of multivalued analysis. Volume I: Theory, Dordrecht: Kluwer Academic Publishers, 1997. A. D. Ioffe...
    • (http://dx.doi.org/10.1007/978-1-4615-6359-4)
    • C. Jean-Alexis and A. Piétrus, On the convergence of some methods for variational inclusions, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser....
    • A. S. Kravchuk and P. J. Neittaanmäki, Variational and quasi-variational inequalities in mechanics, Dordrecht: Springer, 2007.
    • (http://dx.doi.org/10.1007/978-1-4020-6377-0)
    • P. S. Macansantos, A generalized Nadler-type theorem in partial metric spaces, Int. Journal of Math. Analysis 7 (2013), 343-348.
    • P. S. Macansantos, A fixed point theorem for multifunctions in partial metric spaces, J. Nonlinear Anal. Appl. 2013 (2013), 1-7.
    • (http://dx.doi.org/10.5899/2013/jnaa-00200)
    • S. G. Matthews, Partial metric topology, in Papers on general topology and applications. Papers from the 8th summer conference at Queens College,...
    • P. D. Proinov, A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear...
    • (http://dx.doi.org/10.1016/j.na.2006.09.008)
    • P. D. Proinov, New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity...
    • (http://dx.doi.org/10.1016/j.jco.2009.05.001)
    • V. Ptak, Concerning the rate of convergence of Newton's process, Commentat. Math. Univ. Carol. 16 (1975), 699-705.
    • V. Ptak, The rate of convergence of Newton's process, Numer. Math. 25 (1976), 279-285.
    • (http://dx.doi.org/10.1007/BF01399416)
    • M. H. Rashid, J. H. Wang and C. Li, Convergence analysis of a method for variational inclusions, Appl. Anal. 91 (2012), 1943-1956.
    • (http://dx.doi.org/10.1080/00036811.2011.618127)
    • S. M. Robinson, Generalized equations and their solutions, part I: basic theory, Math. Program. Study 10 (1979), 128-141.
    • (http://dx.doi.org/10.1007/BFb0120850)
    • S. M. Robinson, Generalized equations, in Mathematical Programming The State of the Art, A. Bachem, B. Korte, and M. Gröschel, eds., Springer...
    • S. Romaguera, Fixed point theorems for generalized contractions on partial metric spaces, Topology Appl. 159 (2012), 194-199.
    • (http://dx.doi.org/10.1016/j.topol.2011.08.026)
    • I. A. Rus, Generalized contractions and applications, Cluj-Napoca: Cluj University Press, 2001.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno