Ir al contenido

Documat


Derivative-based optimization in colour image filtering an application for derivative learning

  • Autores: A. Sapena, S. Morillas, José Camacho
  • Localización: Modelling in Science Education and Learning, ISSN-e 1988-3145, Nº. 2, 2009, págs. 45-55
  • Idioma: inglés
  • DOI: 10.4995/msel.2009.3117
  • Enlaces
  • Resumen
    • español

      La noción de derivada de una función y su aplicación a la optimización de funciones es un problema interesante e ilustrativo para los estudiantes de ingeniería. En este trabajo, desarrollamos un aplicación del concepto de derivada para la optimización del filtrado de imágenes en color. Ello implica ajustar el parámetro del filtro para obtener un rendimiento óptimo de filtrado. Proponemos maximizar la calidad de la imagen filtrada representada por la relación señal-ruido (Peak Signal-to-Noise Ratio, PSNR), que es una función del parámetro del filtro. El valor óptimo del parámetro se obtiene mediante un algoritmo basado en la aproximación de la derivada de la función del PSNR de manera que se obtenga la imagen filtrada óptima.

    • English

      Related to the notion of derivative of a function, its application to function optimization is an interesting and illustrative problem for Engineering students. In the present work, we develop an application of the derivative concept to optimize the filtering of a colour image. This implies to optimize the value of the filter parameter to maximize performance. We propose to maximize the quality of the filtered image represented by the Peak Signal to Noise Ratio (PSNR), which is a function of the filter parameter. The optimal value for the parameter is obtained by means of an algorithm based on the approximation of the derivative of the PSNR function so that finally the optimum filtered image is obtained.

  • Referencias bibliográficas
    • http://en.wikipedia.org/wiki/Pinhole_camera_model
    • R.C. González, R.E. Woods, Digital Image Processing, Prentice Hall, 2002.
    • K.N. Plataniotis, A.N. Venetsanopoulos, Color Image processing and applications, Springer-Verlag, 2000.
    • P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence...
    • C. Tomasi, R. Manduchi, Bilateral filter for gray and color images, Proc. IEEE International Conference Computer Vision, 1998, 839-846.
    • M. Elad, On the origin of bilateral filter and ways to improve, IEEE Transactions on Image Processing 11 10 (2002) 1141-1151. http://dx.doi.org/10.1109/TIP.2002.801126
    • R. Garnett, T. Huegerich, C. Chui, W. He, A universal noise removal algorithm with an impulse detector, IEEE Transactions on Image Processing...
    • S. Morillas, V. Gregori, A. Sapena, Fuzzy Bilateral Filtering for Color Images, ICIAR’06, Lecture Notes in Computer Science 4141 (2006) 138-145....
    • A. George, P. Veeramani, On Some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 3 (1994) 395-399. http://dx.doi.org/10.1016/0165-0114(94)90162-7
    • A. George, P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy Math. 3 (1995) 933-940.
    • V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems 115 3 (2000) 477-483. http://dx.doi.org/10.1016/S0165-0114(98)00368-6
    • V. Gregori, S. Romaguera, Characterizing completable fuzzy metric spaces, Fuzzy Sets and Systems 144 3 (2004) 411-420. http://dx.doi.org/10.1016/S0165-0114(03)00161-1
    • A. Sapena, A contribution to the study of fuzzy metric spaces, Appl. Gen. Topology 2 1(2001) 63-76.
    • Wellstead PE, Zarrop MB. Self Tuning Systems Control and Signal Processing. England: John Wiley & Sons 1991
    • Ogata K. Modern Control Engineering (4th Ed.). EEUU: Prentice Hall 2002
    • J. Camacho, J. Picó, A. Ferrer, Self-tuning run to run optimization of fed-batch processes using unfold-pls, AIChE Journal 53 (7) (2007) 1789–1804....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno