Niko Marola, Michele Miranda Jr., Nageswari Shanmugalingam
We study mean value properties of harmonic functions in metric measure spaces. The metric measure spaces we consider have a doubling measure and support a (1, 1)-Poincaré inequality. The notion of harmonicity is based on the Dirichlet form defined in terms of a Cheeger differentiable structure. By studying fine properties of the Green function on balls, we characterize harmonic functions in terms of a mean value property. As a consequence, we obtain a detailed description of Poisson kernels. We shall also obtain a Gauss–Green type formula for sets of finite perimeter which posses a Minkowski content characterization of the perimeter. For the Gauss–Green formula we introduce a suitable notion of the interior normal trace of a regular ball.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados