Ir al contenido

Documat


Boundary measures, generalized Gauss–Green formulas, and mean value property in metric measure spaces

  • Niko Marola [1] ; Michele Miranda Jr. [3] ; Nageswari Shanmugalingam [2]
    1. [1] University of Helsinki

      University of Helsinki

      Helsinki, Finlandia

    2. [2] University of Cincinnati

      University of Cincinnati

      City of Cincinnati, Estados Unidos

    3. [3] Università di Ferrara
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 31, Nº 2, 2015, págs. 497-530
  • Idioma: inglés
  • DOI: 10.4171/RMI/843
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study mean value properties of harmonic functions in metric measure spaces. The metric measure spaces we consider have a doubling measure and support a (1, 1)-Poincaré inequality. The notion of harmonicity is based on the Dirichlet form defined in terms of a Cheeger differentiable structure. By studying fine properties of the Green function on balls, we characterize harmonic functions in terms of a mean value property. As a consequence, we obtain a detailed description of Poisson kernels. We shall also obtain a Gauss–Green type formula for sets of finite perimeter which posses a Minkowski content characterization of the perimeter. For the Gauss–Green formula we introduce a suitable notion of the interior normal trace of a regular ball.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno