Ir al contenido

Documat


SC: A novel fuzzy criterion for solving engineering and constrained optimization problems

  • Autores: Sergio Gerardo de los Cobos Silva, Miguel Ángel Gutiérrez Andrade, Eric Alfredo Rincón García, Pedro Lara Velázquez, Román Anselmo Mora Gutiérrez, Antonin Ponsich
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 23, Nº. 1, 2016, págs. 111-142
  • Idioma: inglés
  • DOI: 10.15517/rmta.v23i1.22353
  • Títulos paralelos:
    • SC: Un nuevo criterio difuso para resolver problemas de ingeniería y de optimización con restricciones
  • Enlaces
  • Resumen
    • español

      En este trabajo se presenta un novedoso sistema de convergencia (SC), sus fundamentos y la experiencia computacional. Se implementó en un algoritmo PSO monoobjetivo de tres fases: Estabilización, generación y búsqueda en amplitud, generación y búsqueda a profundidad, el cual se probó con diversos problemas benchmark tanto de ingeniería como de la serie CEC2006. La experiencia computacional y la comparación con resultados previamente reportados se presenta. En algunos casos, se mejoran los resultados de la literatura.

    • English

      In this paper a novel fuzzy convergence system (SC) and its fundamentals are presented. The model was implemented on a monoobjetive PSO algorithm with three phases: 1) Stabilization, 2) generation and breadth-first search, and 3) generation and depth-first. The system SC-PSO-3P was tested with several benchmark engineering problems and with several CEC2006 problems. The computing experience and comparison with previously reported results is presented. In some cases the results reported in the literature are improved.

  • Referencias bibliográficas
    • Aragon, V.S.; Coello, C.A.C. (2010) “A modified version of a t-cell algorithm for constrained optimization problems”, Int. J. Numer. Methods...
    • Belegundu, A.D. (1982) A Study of Mathematical Programming Methods for Structural Optimization. Ph.D. Thesis, Department of Civil Environmental...
    • Coello, C.A.C. (2000) “Use of a self-adaptive penalty approach for engineering optimization problems”, Comput. Ind. 41(2): 113–127.
    • Deb, K. (1991) “Optimal design of a welded beam via genetic algorithms”, AIAA J. 29(11): 2013–2015.
    • de-los-Cobos-Silva, S.G. (2015) “SC: system of convergence. Theory and fundaments”, Revista de Matemática: Teoría y Aplicaciones 22(2): 341–367.
    • Dubois, D.; Prade, H. (1978) “Operations on fuzzy numbers”, International Journal of Systems Science 9(6): 613–626.
    • Elsayed, S.M.; Sarker, R.A.; Essam, D.L. (2012) “On an evolutionary approach for constrained optimization problem solving”, Applied Soft Computing...
    • Gavana, A. (2007?) “Global optimization benchmarks and AMPGO. Test functions”, in: http://infinity77.net/global_optimization/
    • Glover, F. (1989) “Tabu search, Part I”, ORSA Journal on Computing 1(3): 190–206.
    • Glover, F. (1998) “A template for scatter search and path relink”, in: J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer & D. Snyers (Eds.)...
    • He, Q.; Wang, L. (2007a) “An effective co-evolutionary particle swarm optimization for constrained engineering design problems”, Eng. Appl....
    • He, Q.; Wang, L. (2007b) “A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization”, Appl. Math. Comput....
    • Hedar, A.R. (2007?) “Global optimization test problems”, in: http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/go.htm
    • Hibbeler, R.C. (2000) Mechanics of Materials, 8th ed. Prentice Hall, New Jersey.
    • Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor MI.
    • Imran, M.; Hashima, R.; Khalid, N.E.A. (2013) “An overview of particle swarm optimization variants”, Procedia Engineering 53: 491–496.
    • Kalami Heris, S.M. (s.f.) “S. Mostapha Kalami Heris’ homepage”, http://www.kalami.ir
    • Kannan, B.K.; Kramer, S.N. (1994) “An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its...
    • Kennedy, J.; Eberhart, R. (1995) “Particle swarm optimization”, in: Proc. of the IEEE International Conference on Neural Networks, vol. 4:...
    • Kennedy, J.; Eberhart, R.C.; Shi, Y. (2001) Swarm Intelligence. Morgan Kaufmann, San Francisco.
    • Kirkpatrick, S.; Gelatt, C.; Vecchi, M. (1983) “Optimization by simulated annealing”, Science 220: 671–680.
    • Liang, J.J.; Runarsson, T.P.; Mezura-Montes, E.; Clerc, M.; Suganthan, P.N.; Coello Coello, C.A.; Deb, K. (2006) “Problem definitions and...
    • Liou, T.S.; Wang, M.J.J. (1992) “Ranking fuzzy numbers with integral value”, Fuzzy Sets and Systems 50(3): 247–255.
    • Liu, C.A. (2007) “New multiobjective PSO algorithm for nonlinear constrained programming problems”, in: R. Wang, E. Shen E. & F. Gu (Eds.)...
    • Liu, H.; Cai, Z.; Wang, Y. (2010) “Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering...
    • Lu, H.; Chen, W. (2008) “Self-adaptive velocity particle swarm optimization for solving constrained optimization problems”, J. Glob. Opt....
    • Mazhoud, I.; Hadj-Hamou, K.; Bigeon J.; Joyeux P. (2013) “Particle swarm optimization for solving engineering problems: a new constraint-handling...
    • Mezura-Montes, E.; Velázquez-Reyes, J.V.; Coello-Coello, C.A. (2006) “Modified differential evolution for constrained optimization”, in: IEEE...
    • Mezura-Montes, E.; Miranda-Varela, M.E.; Gómez-Ramón, R.C. (2010) “Differential evolution in constrained numerical optimization: An empirical...
    • Rao, S.S. (1996) Engineering Optimization: Theory and Practice. Wiley, New York.
    • Sedighizadeh, D.; Masehian, E. (2009) “Particle swarm optimization methods, taxonomy and applications”, Int. Journal of Computer Theory and...
    • Tessema, B.; Yen, G.G. (2009) “An adaptive penalty formulation for con- strained evolutionary optimization”, IEEE Transactions on Systems,...
    • Toscano-Pulido, G.; Coello, C.A.C. (2004) “A constraint-handling mechanism for particle swarm optimization”, in: IEEE Congress on Evolutionary...
    • Zitzler, E.; Deb, K.; Thiele, L. (2000) “Comparison of multiobjective evolutionary algorithm: empirical results”, Evolutionary Computation...
    • Wang, Y.; Cai, Z.; Zhou, Y. (2009) “Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization”,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno